effector t cells
Recently Published Documents


TOTAL DOCUMENTS

928
(FIVE YEARS 197)

H-INDEX

86
(FIVE YEARS 11)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Sara Alavi ◽  
Abdullah Al Emran ◽  
Hsin-Yi Tseng ◽  
Jessamy C. Tiffen ◽  
Helen Marie McGuire ◽  
...  

One of the limitations of immunotherapy is the development of a state referred to as T cell exhaustion (TEx) whereby T cells express inhibitory receptors (IRs) and lose production of effectors involved in killing of their targets. In the present studies we have used the repeated stimulation model with anti CD3 and anti CD28 to understand the factors involved in TEx development and treatments that may reduce changes of TEx. The results show that addition of nicotinamide (NAM) involved in energy supply to cells prevented the development of inhibitory receptors (IRs). This was particularly evident for the IRs CD39, TIM3, and to a lesser extent LAG3 and PD1 expression. NAM also prevented the inhibition of IL-2 and TNFα expression in TEx and induced differentiation of CD4+ and CD8 T cells to effector memory and terminal effector T cells. The present results showed that effects of NAM were linked to regulation of reactive oxygen species (ROS) consistent with previous studies implicating ROS in upregulation of TOX transcription factors that induce TEx. These effects of NAM in reducing changes of TEx and in increasing the differentiation of T cells to effector states appears to have important implications for the use of NAM supplements in immunotherapy against cancers and viral infections and require further exploration in vivo.


2022 ◽  
Vol 45 (1) ◽  
pp. 34-41
Author(s):  
Aya Hirata ◽  
Eri Sawai ◽  
Marina Henmi ◽  
Chihiro Shibasaki ◽  
Yukihiro Mizoguchi ◽  
...  

Author(s):  
P. A. Bousquet ◽  
S. Meltzer ◽  
A. J. Fuglestad ◽  
T. Lüders ◽  
Y. Esbensen ◽  
...  

Abstract Purpose A significant percentage of colorectal cancer patients proceeds to metastatic disease. We hypothesised that mitochondrial DNA (mtDNA) polymorphisms, generated by the high mtDNA mutation rate of energy-demanding clonal immune cell expansions and assessable in peripheral blood, reflect how efficiently systemic immunity impedes metastasis. Patients and methods We studied 44 rectal cancer patients from a population-based prospective biomarker study, given curative-intent neoadjuvant radiation and radical surgery for high-risk tumour stage and followed for metastatic failure. Blood specimens were sampled at the time of diagnosis and analysed for the full-length mtDNA sequence, composition of immune cell subpopulations and damaged serum mtDNA. Results Whole blood total mtDNA variant number above the median value for the study cohort, coexisting with an mtDNA non-H haplogroup, was representative for the mtDNA of circulating immune cells and associated with low risk of a metastatic event. Abundant mtDNA variants correlated with proliferating helper T cells and cytotoxic effector T cells in the circulation. Patients without metastatic progression had high relative levels of circulating tumour-targeting effector T cells and, of note, the naïve (LAG-3+) helper T-cell population, with the proportion of LAG-3+ cells inversely correlating with cell-free damaged mtDNA in serum known to cause antagonising inflammation. Conclusion Numerous mtDNA polymorphisms in peripheral blood reflected clonal expansion of circulating helper and cytotoxic T-cell populations in patients without metastatic failure. The statistical associations suggested that patient’s constitutional mtDNA manifests the helper T-cell capacity to mount immunity that controls metastatic susceptibility. Trial registration ClinicalTrials.gov NCT01816607; registration date: 22 March 2013.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Bai ◽  
Xueyan Wang ◽  
Guozhen Ma ◽  
Jinen Song ◽  
Xiaowei Liu ◽  
...  

During the past decades, immunotherapy, especially the antibody-mediated immune checkpoint blockade (ICB) has shown durable tumor inhibition and changed the paradigm of cancer treatment. However, a growing body of evidence suggests that ICB treatment induces severe immune-related adverse events (irAEs), and the side effect even leads to the discontinuation of lifesaving treatment. Here, we found that ICB treatment induces colitis in melanoma patients and promotes the infiltration of CD8+ effector T cells into colitic lesions. Further transcriptomic dissection indicated the PI3K-AKT-mTOR pathway was highly activated in CD8+ effector T cells of colitic lesions. Moreover, we developed a mouse melanoma model to recapitulate the gastrointestinal toxicity of anti-PD-1 treatment in clinical settings. Anti-PD-1 treatment significantly contributed to the infiltration of CD8+ T cells, and correspondingly induced severe enteritis. Immunohistochemistry experiments showed that the PI3K-AKT-mTOR pathway of T cells was activated by anti-PD-1 treatment. Blockade of the pathway with mTOR inhibitor sirolimus not only inhibits tumor growth but also suppresses the T cell infiltration in colitic lesions. More importantly, combination with sirolimus and anti-PD-1 synergistically inhibits tumor growth via inducing the immunogenic cell death of tumor cells in vivo. In summary, our research demonstrated the principle of mTOR inhibitor and anti-PD-1 combinatorial therapeutic regimen, which provided a novel therapeutic strategy for irAEs in clinics.


2021 ◽  
Author(s):  
Qingqing Yang ◽  
Hongying Zhang ◽  
Jing Sun ◽  
Jingcheng Dong ◽  
Lingwen Kong

Abstract The recurrence of asthma is partly mediated by central memory CD4(+) T cells(TCM) that promote lung inflammation through the production of effector T cells. Targeting the expansion of pathogenic TCM(central memory CD4(+) T cells) is a promising therapeutic strategy to block production of effector T cells. The study aimed to evaluate the regulatory effects of Astragaloside IV (AS-IV) on TCMs and try to explore the anti-inflammatory mechanism of AS-IV in asthmatic mice. We developed a murine model of asthma by ovalbumin(OVA) challenge. Flow cytometry was used to determine the counts of CD4(+) memory T cells subgroups. Pulmonary tests, inflammatory cytokines in blood and inflammatory cells in bronchoalveolar lavage fluid,were measured to evaluate the inflammatory response level before and after AS-IV treatment. To further determine the role of TCM in the recurrence of inflammation, TCM were isolated by Magnetic-activated cell sorting (MACS) from spleens of asthma, control, AS-IV and dexamethasone treatment mice. The isolated cells were adoptive transferred into nude mice via tail intravenous injection, respectively, and the inflammatory response level of the lung was measured after OVA challenge. The effects of AS-IV on TCM viability, the number of the frequency (in percent) of CD44highCD62Lhigh cells, and the expression of OX40 and OX40L were measured before and after AS-IV treatment. In circulation blood, we demonstrated increased percentages of CCR7highCD62LlowCD4+ effector memory T cells(TEM) and decreased CCR7highCD62LhighCD4(+) TCM in asthma mice. On the contrary, the TEM subgroup percentage were decreased and the TCM phenotypes were increased in asthmatic spleen. AS-IV treatment significantly decreased CD4(+) T effector phenotypes in blood and inhibited the lung inflammatory response. Additionally, the inflammation of nude mice that adoptive transferred TCM from AS-IV treatment asthmatic mice had relieved inflammation compared with asthmatic group. In vitro, we successfully used spleen T lymphoid cells stimulated with IL-7 and OVA to induce a central memory T cell model. TCM co-cultured with DC cells had a significantly increased expression of OX40/OX40L. AS-IV pretreatment partially inhibited the expression of OX40 signal pathway. This study indicates that AS-IV can ameliorate asthma inflammation by inhibiting the production of TEM form TCM. The treatment mechanism maybe involved in the OX40/OX40L pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunmeng Bai ◽  
Meiling Hu ◽  
Zixi Chen ◽  
Jinfen Wei ◽  
Hongli Du

T-cell exhaustion is one of the main reasons of tumor immune escape. Using single-cell transcriptome data of CD8+ T cells in multiple cancers, we identified different cell types, in which Pre_exhaust and exhausted T cells participated in negative regulation of immune system process. By analyzing the coexpression network patterns and differentially expressed genes of Pre_exhaust, exhausted, and effector T cells, we identified 35 genes related to T-cell exhaustion, whose high GSVA scores were associated with significantly poor prognosis in various cancers. In the differentially expressed genes, RGS1 showed the greatest fold change in Pre_exhaust and exhausted cells of three cancers compared with effector T cells, and high expression of RGS1 was also associated with poor prognosis in various cancers. Additionally, RGS1 protein was upregulated significantly in tumor tissues in the immunohistochemistry verification. Furthermore, RGS1 displayed positive correlation with the 35 genes, especially highly correlated with PDCD1, CTLA4, HAVCR2, and TNFRSF9 in CD8+ T cells and cancer tissues, indicating the important roles of RGS1 in CD8+ T-cell exhaustion. Considering the GTP-hydrolysis activity of RGS1 and significantly high mRNA and protein expression in cancer tissues, we speculated that RGS1 potentially mediate the T-cell retention to lead to the persistent antigen stimulation, resulting in T-cell exhaustion. In conclusion, our findings suggest that RGS1 is a new marker and promoting factor for CD8+ T-cell exhaustion and provide theoretical basis for research and immunotherapy of exhausted cells.


2021 ◽  
Vol 22 (23) ◽  
pp. 13098
Author(s):  
Yumiko Tanaka ◽  
Ayaka Nakao ◽  
Yasunobu Miyake ◽  
Yukina Higashi ◽  
Riho Tanigaki ◽  
...  

The T-box transcription factor Eomesodermin (Eomes) promotes the expression of interferon-γ (IFN-γ). We recently reported that the small molecule inhibitors, TPCA-1 and IKK-16, which target nuclear factor κB (NF-κB) activation, moderately reduced Eomes-dependent IFN-γ expression in mouse lymphoma BW5147 cells stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In the present study, we investigated the direct effects of NF-κB on IFN-γ expression in mouse lymphoma EL4 cells and primary effector T cells. Eomes strongly promoted IFN-γ expression and the binding of RelA and NFATc2 to the IFN-γ promoter when EL4 cells were stimulated with PMA and IM. Neither TPCA-1 nor IKK-16 reduced IFN-γ expression; however, they markedly decreased interleukin (IL)-2 expression in Eomes-transfected EL4 cells. Moreover, TPCA-1 markedly inhibited the binding of RelA, but not that of Eomes or NFATc2 to the IFN-γ promoter. In effector CD4+ and CD8+ T cells activated with anti-CD3 and anti-CD28 antibodies, IFN-γ expression induced by PMA and A23187 was not markedly decreased by TPCA-1 or IKK-16 under conditions where IL-2 expression was markedly reduced. Therefore, the present results revealed that NF-κB is dispensable for IFN-γ expression induced by PMA and calcium ionophores in EL4 cells expressing Eomes and primary effector T cells.


Sign in / Sign up

Export Citation Format

Share Document