Reversible Redox Transformations of Bridging Sulfide Ligands within Bioctahedral Rhenium Cluster Anions

2016 ◽  
Vol 2016 (25) ◽  
pp. 4066-4075 ◽  
Author(s):  
Yakov M. Gayfulin ◽  
Anton I. Smolentsev ◽  
Lyudmila V. Yanshole ◽  
Svetlana G. Kozlova ◽  
Yuri V. Mironov
ChemInform ◽  
2016 ◽  
Vol 47 (45) ◽  
Author(s):  
Yakov M. Gayfulin ◽  
Anton I. Smolentsev ◽  
Lyudmila V. Yanshole ◽  
Svetlana G. Kozlova ◽  
Yuri V. Mironov

ChemInform ◽  
2004 ◽  
Vol 35 (41) ◽  
Author(s):  
Konstantin A. Brylev ◽  
Yuri V. Mironov ◽  
Nikolai G. Naumov ◽  
Vladimir E. Fedorov ◽  
James A. Ibers

2004 ◽  
Vol 43 (16) ◽  
pp. 4833-4838 ◽  
Author(s):  
Konstantin A. Brylev ◽  
Yuri V. Mironov ◽  
Nikolai G. Naumov ◽  
Vladimir E. Fedorov ◽  
James A. Ibers

2020 ◽  
Author(s):  
Ian Colliard ◽  
Gregory Morrosin ◽  
Hans-Conrad zur Loye ◽  
May Nyman

Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger Ln<sup>III</sup> (Ln=La-Ho) link hexamer (U<sub>6</sub>) oxoclusters into body-centered cubic frameworks, while smaller Ln<sup>III</sup> (Ln=Er-Lu &Y) promote linking of fourteen U<sub>6</sub>-clusters into hollow superclusters (U<sub>84</sub> superatoms). U<sub>84</sub> assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U<sub>6</sub>-clusters. Divalent transition metals (TM=Mn<sup>II </sup>and Zn<sup>II</sup>), with no added acid, charge-balance and promote the fusion of 10 U<sub>6</sub> and 10 U-monomers into a wheel–shaped cluster (U<sub>70</sub>). Dissolution of U<sub>70</sub> in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U<sub>70</sub>-clusters. <br>


2019 ◽  
Author(s):  
Christopher John ◽  
Greg M. Swain ◽  
Robert P. Hausinger ◽  
Denis A. Proshlyakov

2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an <i>in situ</i> structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semi-empirical computational methods, demonstrating that the Fe (III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and 171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.


Author(s):  
Mardia T. El Sayed ◽  
Ibrahim H.I. Habib ◽  
Nermien M. Sabry ◽  
Sergey A. Pisarev ◽  
Mohamed El-Naggar ◽  
...  

Absorption spectra of tetrahydro[3,2-b]indolo-carbazoles (THICZs) with various molecular size and alkyl tails have been recorded in various solvents in the range between 200 to 600 nm. The photo physical behaviour of dissolved THICZs depends on the nature of its environment. The solvatochromic behaviours of THICZs and solvent solute interactions can be analysed by means of linear solvation energy relationships concept proposed by Kamlet and Taft. Compound 4 show excellent properties for sensing small molecules. The electrochemical behaviour of some THICZs was investigated at carbon paste electrode where two electrode reactions were involved, irreversible oxidation-one electron transfer and quasi-reversible redox reactions forming phenolic followed by quinolone moiety electro active species. The DFT-calculated molecular orbital energies (B3LYP/6-31G) and HOMO-LUMO gaps for some presented indolocarbazoles have been performed.


Sign in / Sign up

Export Citation Format

Share Document