Synthesis and characterization of cast resin based on different saturation epoxidized soybean oil

2010 ◽  
Vol 112 (4) ◽  
pp. 511-516 ◽  
Author(s):  
Yantao Li ◽  
Liyu Fu ◽  
Shufen Lai ◽  
Xinchao Cai ◽  
Liting Yang
1970 ◽  
Vol 1 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Hiew Ming Yu ◽  
Arun Gupta ◽  
Ritu Gupta ◽  
Saad Bala Husain

Soybean oil is one of the major vegetable oils containing more than 99% of triglycerides of saturated and unsaturated fatty acids and has become an interesting source to produce bioplastic. This study investigates the synthesis and characterization of bioplastic developed by the acrylate epoxidized soybean oil through ring opening polymerization process. The mechanical properties of the samples were characterized using Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and the physio-chemical properties of the bioplastics were studied. In this study, the bioplastic made up from soybean oil with the lowest glycerol concentration showed the best mechanical properties.


2019 ◽  
Vol 43 (5) ◽  
pp. 1365-1382
Author(s):  
Aynur ÖZŞEKER ◽  
Kemal KARADENİZ ◽  
Mustafa Yasin ŞEN

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 491-499
Author(s):  
Fukai Yang ◽  
Hao Yu ◽  
Yuyuan Deng ◽  
Xinyu Xu

Abstract In this article, five kinds of soybean oil-based polyols (polyol-E, polyol-P, polyol-I, polyol-B, and polyol-M) were prepared by ring-opening the epoxy groups in epoxidized soybean oil (ESO) with ethyl alcohol, 1-pentanol, isoamyl alcohol, p-tert-butylphenol, and 4-methoxyphenol in the presence of tetrafluoroboric acid as the catalyst. The SOPs were characterized by FTIR, 1H NMR, GPC, viscosity, and hydroxyl numbers. Compared with ESO, the retention time of SOPs is shortened, indicating that the molecular weight of SOPs is increased. The structure of different monomers can significantly affect the hydroxyl numbers of SOPs. Due to the large steric hindrance of isoamyl alcohol, p-hydroxyanisole, and p-tert-butylphenol, SOPs prepared by these three monomers often undergo further dehydration to ether reactions, which consumes the hydroxyl of polyols, thus forming dimers and multimers; therefore, the hydroxyl numbers are much lower than polyol-E and polyol-P. The viscosity of polyol-E and polyol-P is much lower than that of polyol-I, polyol-B, and polyol-M. A longer distance between the molecules and the smaller intermolecular force makes the SOPs dehydrate to ether again. This generates dimer or polymers and makes the viscosity of these SOPs larger, and the molecular weight greatly increases.


Sign in / Sign up

Export Citation Format

Share Document