glycerol concentration
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 73)

H-INDEX

33
(FIVE YEARS 4)

Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 499-513
Author(s):  
Eleni-Stavroula Vastaroucha ◽  
Sofia Maina ◽  
Savvoula Michou ◽  
Ourania Kalantzi ◽  
Chrysanthi Pateraki ◽  
...  

The utilization of crude glycerol, generated as a by-product from the biodiesel production process, for the production of high value-added products represents an opportunity to overcome the negative impact of low glycerol prices in the biodiesel industry. In this study, the biochemical behavior of Yarrowia lipolytica strains FMCC Y-74 and FMCC Y-75 was investigated using glycerol as a carbon source. Initially, the effect of pH value (3.0–7.0) was examined to produce polyols, intracellular lipids, and polysaccharides. At low pH values (initial pH 3.0–5.0), significant mannitol production was recorded. The highest mannitol production (19.64 g L−1) was obtained by Y. lipolytica FMCC Y-74 at pH = 3.0. At pH values ranging between 5.0 and 6.0, intracellular polysaccharides synthesis was favored, while polyols production was suppressed. Subsequently, the effect of crude glycerol and its concentration on polyols production was studied. Y. lipolytica FMCC Y-74 showed high tolerance to impurities of crude glycerol. Initial substrate concentrations influence polyols production and distribution with a metabolic shift toward erythritol production being observed when the initial glycerol concentration (Gly0) increased. The highest total polyols production (=56.64 g L−1) was obtained at Gly0 adjusted to ≈120 g L−1. The highest polyols conversion yield (0.59 g g−1) and productivity (4.36 g L−1 d−1) were reached at Gly0 = 80 g L−1. In fed-batch intermittent fermentation with glycerol concentration remaining ≤60 g L−1, the metabolism was shifted toward mannitol biosynthesis, which was the main polyol produced in significant quantities (=36.84 g L−1) with a corresponding conversion yield of 0.51 g g−1.


Author(s):  
Rafael Contreras-Chávez ◽  
Ma. Guadalupe Garnica Romo ◽  
Héctor Eduardo Martínez-Flores ◽  
Juan de Dios Figueroa-Cárdenas ◽  
Carlos Alberto Rodrigues Anjos ◽  
...  

Abstract The objective of this study was to ascertain the optimal additive conditions to develop a film from an alternative source of modified starch, using the response surface methodology. The central composite design + points used factors to evaluate the effect of the independent variables (glycerol concentration: 0.3, 0.35, and 0.40 g/g starch; carboxymethylcellulose: 0.5, 0.75 and 1 g/5 g starch; stearic acid 0.025, 0.05, and 0.075 g/5 g starch) on the response variables (solubility, swelling, opacity, luminosity, tensile strength, elongation, water vapor permeability, and water activity). A simultaneous optimization was achieved using concentrations of glycerol 0.30 g/g starch, CMC 0.32 g/5g starch, and stearic acid 0.007g/5g starch, which generated interesting properties validated through experimentation. Therefore, an ecological film was obtained that can be considered for food coating because it presented a low permeability to water vapor (0.0055 g/msMPa), a high percentage of elongation (91%), and a decrease in solubility (23%). This will also allow the incorporation of other compounds such as antioxidants, reinforcements, and sensors with favorable results, and with a positive perspective on the use of alternative sources of starch.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1853
Author(s):  
Ingrid Ramm ◽  
Adrian Sanchez-Fernandez ◽  
Jaeyeong Choi ◽  
Christian Lang ◽  
Jonas Fransson ◽  
...  

The addition of glycerol to protein solutions is often used to hinder the aggregation and denaturation of proteins. However, it is not a generalised practice against chemical degradation reactions. The chemical degradation of proteins, such as deamidation and isomerisation, is an important deteriorative mechanism that leads to a loss of functionality of pharmaceutical proteins. Here, the influence of glycerol on the chemical degradation of a protein and its correlation to glycerol-induced conformational changes is presented. The time-dependent chemical degradation of a pharmaceutical protein, GA-Z, in the absence and presence of glycerol was investigated in a stability study. The effect of glycerol on protein conformation and oligomerisation was characterised using asymmetric field-flow fractionation and small-angle neutron scattering in a wide glycerol concentration range of 0–90% v/v. The results from the stability study were connected to the observed glycerol-induced conformational changes in the protein. A correlation between protein conformation and the protective effect of glycerol against the degradation reactions deamidation, isomerisation, and hydrolysis was found. The study reveals that glycerol induces conformational changes of the protein, which favour a more compact and chemically stable state. It is also shown that the conformation can be changed by other system properties, e.g., protein concentration, leading to increased chemical stability.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1427
Author(s):  
Gideon K. Gogovi ◽  
Swabir Silayi ◽  
Amarda Shehu

Many biological and biotechnological processes are controlled by protein–protein and protein–solvent interactions. In order to understand, predict, and optimize such processes, it is important to understand how solvents affect protein structure during protein–solvent interactions. In this study, all-atom molecular dynamics are used to investigate the structural dynamics and energetic properties of a C-terminal domain of the Rift Valley Fever Virus L protein solvated in glycerol and aqueous glycerol solutions in different concentrations by molecular weight. The Generalized Amber Force Field is modified by including restrained electrostatic potential atomic charges for the glycerol molecules. The peptide is considered in detail by monitoring properties like the root-mean-squared deviation, root-mean-squared fluctuation, radius of gyration, hydrodynamic radius, end-to-end distance, solvent-accessible surface area, intra-potential energy, and solvent–peptide interaction energies for hundreds of nanoseconds. Secondary structure analysis is also performed to examine the extent of conformational drift for the individual helices and sheets. We predict that the peptide helices and sheets are maintained only when the modeling strategy considers the solvent with lower glycerol concentration. We also find that the solvent-peptide becomes more cohesive with decreasing glycerol concentrations. The density and radial distribution function of glycerol solvent calculated when modeled with the modified atomic charges show a very good agreement with experimental results and other simulations at 298.15K.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1139
Author(s):  
Jung-Hyun Ju ◽  
Sang-Gyu Jeon ◽  
Kyung Min Lee ◽  
Sun-Yeon Heo ◽  
Min-Soo Kim ◽  
...  

3-Hydroxypropionaldehyde (3-HPA, reuterin) is a broad-spectrum natural antimicrobial agent used in the food industry and other fields. The low yield from the industrial production of 3-HPA using Lactobacillus reuteri and the spontaneous conversion of 3-HPA to acrolein have limited its more widespread use. We isolated L. reuteri BR201 as a biocatalyst for 3-HPA production and confirmed the effect of each factor in the two-step procedure for 3-HPA bioconversion. After initial cultivation for 8 h (late exponential phase), this isolate produced 378 mM of 3-HPA in 1 h at a concentration of OD600 nm 100, 30 °C, and an initial glycerol concentration of 500 mM. This is the highest reported biocatalytic yield of 3-HPA from a glycerol aqueous solution without additives. We confirmed that 4 mM of 3-HPA had antimicrobial activity against five pathogens. The degradation of 3-HPA to acrolein was greater at high temperatures, and there was little degradation when 3-HPA was maintained at 4 °C for 4 weeks. Our results may be useful for future applications of 3-HPA.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 416-422
Author(s):  
A. Fadeyibi ◽  
Z.D. Osunde

In this research, the effects of matrix variability and thickness on the properties of a flexible nanocomposite film were investigated. The nanocomposite film was prepared from the blends of 1 kg cassava starch, 45–55% (w/v) glycerol and 0–2% (w/v) zincnanoparticles in thickness ranging from 15 −17 µm. The barrier, mechanical, and thermal properties were determined experimentally. The optimal effects of the thickness and the matrix variability on the properties were determined using Response Surface Methodology. Results showed that the barrier properties increased with glycerol concentration but decreased with thickness. Reduced modulus and tensile strength increased with an increase in the matrix variability. The film was thermally stable up to 60.43oC with only 2% degradation. The optimal film contains 55% glycerol, 2% zinc nanoparticles with a thickness of 17 µm at a desirability index of 0.95. This can therefore be essential for industrial application


2021 ◽  
Vol 67 (2) ◽  
pp. 142-147
Author(s):  
Xin Liao ◽  
Liqun Teng ◽  
Wei Li

Organic solvent-resistant proteases are used to synthesize valuable pharmaceutical and industrial compounds. Using an available and inexpensive source can be very effective in producing this enzyme. For this purpose, Staphylococcus aureus KP091274 was isolated from burn infection and a medium optimization procedure in the presence of organic solvents was considered for four factors of incubation time, the concentration of Mg2+, glycerol and sorbitol using the response surface methodology. The results of this statistical method showed that incubation time has the most effect and glycerol concentration has the least positive effect on enzyme secretion. As a result of applying the optimized conditions in the bacterial culture medium (3mM of Mg2+, 1.5% W/V of glycerol, 0.4% W/V of sorbitol and 72 hours of incubation), the enzyme secretion reaches its maximum.


2021 ◽  
Vol 72 (1) ◽  
pp. 135-146
Author(s):  
Chunyun Zhu ◽  
Yongtai Zhang ◽  
Tong Wu ◽  
Zehui He ◽  
Teng Guo ◽  
...  

Abstract Triptolide exerts strong anti-inflammatory and immunomodulatory effects; however, its oral administration might be associated with side effects. Transdermal administration can improve the safety of triptolide. In this study, glycerosomes were prepared as the transdermal vehicle to enhance the transdermal delivery of triptolide. With entrapment efficiency and drug loading as dependent variables, the glycerosome formulation was optimized using an orthogonal experimental design. Phospholipid-to-cholesterol and phospholipid-to-triptolide mass ratios of 30:1 and 5:1, respectively and a glycerol concentration of 20 % (V/V) were used in the optimization. The glycerosomes prepared with the optimized formulation showed good stability, with an average particle size of 153.10 ± 2.69 nm, a zeta potential of –45.73 ± 0.60 mV and an entrapment greater than 75 %. Glycerosomes significantly increased the transdermal delivery of triptolide compared to conventional liposomes. As efficient carriers for the transdermal delivery of drugs, glycerosomes can potentially be used as an alternative to oral triptolide administration.


Sign in / Sign up

Export Citation Format

Share Document