Shaking table test and numerical simulation of an RC frame-core tube structure for earthquake-induced collapse

2016 ◽  
Vol 45 (9) ◽  
pp. 1537-1556 ◽  
Author(s):  
Zheng Lu ◽  
Xiaoyi Chen ◽  
Xilin Lu ◽  
Zi Yang
2010 ◽  
Vol 163-167 ◽  
pp. 981-986
Author(s):  
Li He ◽  
Xian Guo Ye

This paper presents the nonlinear dynamic simulation analysis of a shaking table test specimen, which was a twelve- story reinforced concrete frame and tested under base excitations representing four earthquake records of increasing intensity. Owing to the length constraint of the paper, three cases are used for the simulation. The numerical simulation of the test model is conducted utilizing the finite element analysis procedure CANNY, and the analysis results include the natural frequency, response history of the frame and the damage evolution. It is concluded from comparisons between experimental results and the numerical simulation ones that the latter matches well with the former, therefore the validity of the analytical method and model for simulation of RC frame shaking table test is proved.


2019 ◽  
Vol 18 (3) ◽  
pp. 611-630 ◽  
Author(s):  
Xue Suduo ◽  
Shan Mingyue ◽  
Li Xiongyan ◽  
Liang Shuanzhu ◽  
Huang Fuyun ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Wang ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Shujun Zhang

Pillar electrical equipment is an important part of substations. The application of composite materials in pillar equipment can facilitate the improvement of the seismic performance of electrical equipment. In this paper, the test of elastic modulus and bending rigidity was conducted for individual composite elements in insulators and arresters, and the calculation formula for bending rigidity at the composite flange cementing connections was put forward. The numerical simulation model for the earthquake simulation shaking table test of ±1,100 kV composite pillar insulators was established, in which the bending rigidity value for the flange cementing part was obtained by the test or calculation formula. The numerical simulation results were compared with the earthquake simulation shaking table test results, the dynamic characteristics and seismic response of the model were compared, respectively, the validity of the proposed calculation formula for flange bending rigidity of composite cementing parts was verified, and a convenient and effective means was provided for calculating the seismic performance of composite electrical equipment.


2010 ◽  
Vol 36 (4) ◽  
pp. 481-497 ◽  
Author(s):  
B. Phansri ◽  
S. Charoenwongmit ◽  
P. Warnitchai ◽  
D.H. Shin ◽  
K.H. Park

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Baizan Tang ◽  
Xiaojun Li ◽  
Su Chen ◽  
Lihong Xiong

The expansive polystyrene granule cement (EPSC) latticed concrete wall is a new type of energy-saving wall material with load-bearing, insulation, fireproof, and environmental protection characteristics. A series of shaking table tests were performed to investigate the seismic behavior of a full-scale reinforced concrete (RC) frame with EPSC latticed concrete infill wall, and data obtained from the shaking table test were analyzed. The experimental results indicate that the designed RC frame with EPSC latticed concrete infill wall has satisfactory seismic performance subjected to earthquakes, and the seismic responses of the model structure are more sensitive to input motions with more high frequency components and long duration. The EPSC latticed concrete infill wall provided high lateral stiffness so that the walls can be equivalent to a RC shear wall. The horizontal and vertical rebar, arranged in the concrete lattice beam and column, could effectively restrain the latticed concrete infill wall and RC frame. To achieve a more comprehensive evaluation on the performance of the RC frame with latticed concrete infill walls, further research on its seismic responses is expected by comparing with conventional infill walls and nonlinear analytical method.


2017 ◽  
Vol 210 ◽  
pp. 393-400
Author(s):  
Shuang Hou ◽  
Haibin Zhang ◽  
Xin Han ◽  
Jinping Ou

Sign in / Sign up

Export Citation Format

Share Document