Implications of strong earthquake ground motion duration on the response and testing of seismic isolation systems

Author(s):  
Shoma Kitayama ◽  
Michael C. Constantinou
2013 ◽  
Vol 19 (5) ◽  
pp. 665-682 ◽  
Author(s):  
Mohammad H. Alhamaydeh ◽  
Samer A. Barakat ◽  
Farid H. Abed

This work presents the development and implementation of the Multiple Regression Analysis (MRA) model to Seismic-Isolation (SI) systems consisting of Natural Rubber Bearings and Viscous Fluid Dampers subject to Near-Field (NF) earthquake ground motion. A model representing a realistic five-story base-isolated building is used. Several damper properties are used in creating an array of feasible combinations for the SI system. Two ensembles of seven NF earthquake records are utilized representing two seismic hazard levels. The key response parameters investigated are the Total Maximum Displacement, the Peak Damper Force and the Top Story Acceleration Ratio of the isolated structure compared to the fixed-base structure. Mathematical models for the key response parameters are established via MRA. The MRA models produced acceptable results with significantly less computation. This is demonstrated via a practical example of how the MRA models would be incorporated in the design process, especially at the preliminary stages.


Author(s):  
Tynymbek O. Ormonbekov ◽  
Ulugbek T. Begaliev

The purpose of the present work is the analysis of existing methods of seismoisolation in the Kyrgyz Republic at which 95% of territory has seismically active zone with intensity 8, 9 and more. Also an opportunity of application of system seismic protection as rubber-metal bearings.


Author(s):  
Tsutomu Hirotani ◽  
Ryota Takahama ◽  
Masaki Yukawa ◽  
Hiroshi Hibino ◽  
Yuji Aikawa ◽  
...  

This paper provides a series comprising the “Development of Evaluation Method for Seismic Isolation Systems of Nuclear Power Facilities”. Part 6 presents scaled tests for Lead Rubber Bearing (LRB) newly developed for this project. Following tests are performed to obtain the basic characteristics of LRB,. (1) Horizontal and Vertical Simultaneous Loading Test: LRBs with diameter of 250mm are tested dynamically under simultaneous axial and lateral loading. The hysteresis characteristics is not changed under compressive load although it is changed under tensile load. (2) Basic Break Test: LRBs with a diameter of 800mm are tested statically under various combinations of axial and lateral forces. The hysteresis characteristics model of LRB is determined by this test. It is confirmed that the breaking strain of LRB under compression load exceeds 450%. (3) Horizontal Hardening and Vertical Softening Test: For LRBs with a diameter of 1200 mm, 75% scale of actual LRB are tested statically for horizontal hardening and vertical softening regions. It is confirmed that the hysteresis model which is developed by smaller LRBs is applicable to these large scale models.


Sign in / Sign up

Export Citation Format

Share Document