Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a)

2008 ◽  
Vol 32 (9) ◽  
pp. 824-836 ◽  
Author(s):  
Ahmet Kabul ◽  
Önder Kizilkan ◽  
Ali Kemal Yakut
2013 ◽  
Vol 14 (1) ◽  
Author(s):  
A. B. Kasaeian ◽  
S. Daviran

In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω), compression ratio (rp) and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) and R1234ze(z). The results show that R114 and R1234ze(e) yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e) for all operating conditions. This paper also demonstrates that R1234ze(e) will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω), nisbah mampatan (rp) dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) dan R1234ze(z).Hasil kajian menunjukkan R114 dan R1234ze(e) menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e) bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e) boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor -wap solar, kerana ianya mempunyai prestasi yang lebih baik serta sifatnya yang lebih mesra alam sekitar. KEYWORDS: environmental friendly refrigerants; solar combined ejector-vapor compression cycle; R1234ze(e)


2021 ◽  
Vol 11 (13) ◽  
pp. 6226
Author(s):  
Morteza Ghanbarpour ◽  
Adrián Mota-Babiloni ◽  
Bassam E. Badran ◽  
Rahmatollah Khodabandeh

The phase-down of hydrofluorocarbons and substitution with low global warming potential values are consequences of the awareness about the environmental impacts of greenhouse gases. This theoretical study evaluated the energy and exergy performances and the environmental impact of three vapor compression system configurations operating with the hydrocarbons R290, R600a, and R1270 as alternatives to R134a. The refrigeration cycle configurations investigated in this study include a single-stage cycle, a cycle equipped with an internal heat exchanger, and a two-stage cycle with vapor injection. According to the results, the alternative hydrocarbon refrigerants could provide comparable system performance to R134a. The analysis results also revealed that using an internal heat exchanger or a flash tank vapor injection could improve the system’s efficiency while decreasing the heating capacity. The most efficient configuration was the two-stage refrigeration cycle with vapor injection, as revealed by the exergy analysis. The environmental impact analysis indicated that the utilization of environmentally-friendly refrigerants and improving the refrigeration system’s efficiency could mitigate equivalent CO2 emissions significantly. The utilization of hydrocarbons reduced the carbon footprint by 50%, while a 1% to 8% reduction could be achieved using the internal heat exchanger and flash tank vapor injection.


This paper gives preliminary aftereffects of VCR (Vapor Compression Refrigeration) go through setting twisted strip inside the condenser tube, using liquid suction warmth exchanger (lshe), and R134a as refrigerant in this cycle. examination executed on basic condenser tube with 3 different bended point strips verified in condenser tubes on the element of liquid suction heat exchanger for subcooling to remove suitable COP from cutting edge VCR machine. inside the proposed, lshe are taken through using each the procedures, strip focuses, α=a hundred,one hundred forty &one hundred eighty by methods for undeniable chamber and with subcooling. The proposed check has additionally made a through and through appraisal of COP, refrigeration influence, charge of impact and capability. in the communicated test; it's miles put that the drop in weight is 16% for the twisted strip tube condenser while in evaluation to customary condenser tube. other than it's in like manner seen that condenser with bowed strip implanted increments quick rot inside the temperature of evaporator than basic chamber. The effect and viability of misshaped strip verified cylinder condenser is unnecessary as strain drop falls in the condenser and decline of evaporator temperature


Sign in / Sign up

Export Citation Format

Share Document