Highly efficient catalytic o ne‐pot biofuel production from lignocellulosic biomass derivatives

Author(s):  
Wahiba Bendeddouche ◽  
Sumeya Bedrane ◽  
Asma Zitouni ◽  
Redouane Bachir
ACS Catalysis ◽  
2020 ◽  
Vol 10 (21) ◽  
pp. 12487-12506
Author(s):  
Jaeyong Park ◽  
Handi Setiadi Cahyadi ◽  
Umair Mushtaq ◽  
Deepak Verma ◽  
Daseul Han ◽  
...  

2021 ◽  
Author(s):  
Rajiv CHANDRA RAJAK ◽  
Pathikrit Saha ◽  
Mamata S Singhvi ◽  
Darae Kwak ◽  
Danil Kim ◽  
...  

Pretreatment of lignocellulosic biomass to specifically depolymerise lignin moieties without loss of carbohydrates as well as to minimize the generation of harmful intermediates during the process is a major challenge...


2021 ◽  
Vol 223 ◽  
pp. 106997 ◽  
Author(s):  
Anh Tuan Hoang ◽  
Hwai Chyuan Ong ◽  
I. M. Rizwanul Fattah ◽  
Cheng Tung Chong ◽  
Chin Kui Cheng ◽  
...  

2018 ◽  
Vol 37 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ismail Cem Kantarli ◽  
Stylianos D Stefanidis ◽  
Konstantinos G Kalogiannis ◽  
Angelos A Lappas

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5–8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


Author(s):  
Desikan Ramesh ◽  
Iniya Kumar Muniraj ◽  
Kiruthika Thangavelu ◽  
Subburamu Karthikeyan

The shifting of dependence from conventional fuels to renewable fuels and its increased production to combat the energy, environmental, and geopolitical crises is a global concern. One of the viable and promising alternatives is liquid biofuel production using lignocellulosic biomass. Lignocellulosic biomass being the most abundant encompass cellulose, hemicellulose, and lignin.The intricate complex of hemicellulose and lignin around cellulose is the bottleneck in commercializing the biofuel process. To make the cellulose and hemicellulose more accessible for hydrolysis and valorise the underutilized lignin for platform chemical production, pretreatment becomes imperative. Various pretreatment methods such as physical, mechanical, chemical, biological, and enzymatic and their combinations are employed for the production of bioethanol. It should be stressed that each pretreatment is unique in its condition and in most cases are biomass specific. With the above view, this chapter aims at bringing out the understanding of lignocellulosic pretreatment with updated information in the field.


Author(s):  
Prachand Shrestha ◽  
Buddhi P. Lamsal ◽  
Samir Kumar Khanal

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5300
Author(s):  
Mamata Singhvi ◽  
Beom Soo Kim

The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.


Sign in / Sign up

Export Citation Format

Share Document