Comparative analysis of the impact of energy‐aware scheduling, renewable energy generation, and battery energy storage on production scheduling

Author(s):  
Sajad Karimi ◽  
Soongeol Kwon
Energy ◽  
2019 ◽  
Vol 173 ◽  
pp. 647-657 ◽  
Author(s):  
Felix Keck ◽  
Manfred Lenzen ◽  
Anthony Vassallo ◽  
Mengyu Li

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3367 ◽  
Author(s):  
Karl Stein ◽  
Moe Tun ◽  
Keith Musser ◽  
Richard Rocheleau

Battery energy storage systems (BESSs) are being deployed on electrical grids in significant numbers to provide fast-response services. These systems are normally procured by the end user, such as a utility grid owner or independent power producer. This paper introduces a novel research project in which a research institution has purchased a 1 MW BESS and turned ownership over to a utility company under an agreement that allowed the institution to perform experimentation and data collection on the grid for a multi-year period. This arrangement, along with protocols governing experimentation, has created a unique research opportunity to actively and systematically test the impact of a BESS on a live island grid. The 2012 installation and commissioning of the BESS was facilitated by a partnership between the Hawaii Natural Energy Institute (HNEI) and the utility owner, the Hawaiian Electric and Light Company (HELCO). After the test period ended, HELCO continued to allow data collection (including health testing). In 2018, after 8500 equivalent cycles, the BESS continues to operate within specifications. HNEI continues to provide HELCO with expertise to aid with diagnostics as needed. Details about the BESS design, installation, experimental protocols, initial results, and lessons learned are presented in this paper.


2021 ◽  
Author(s):  
Hassan Hayajneh ◽  
Xuewei Zhang

To minimize the curtailment of renewable generation and incentivize grid-scale energy storage deployment, a concept of combining stationary and mobile applications of battery energy storage systems built within renewable energy farms is proposed. A simulation-based optimization model is developed to obtain the optimal design parameters such as battery capacity and power ratings by solving a multi-objective optimization problem that aims to maximize the economic profitability, the energy provided for transportation electrification, the demand peak shaving, and the renewable energy utilized. Two applications considered for the stationary energy storage systems are the end-consumer arbitrage and frequency regulation, while the mobile application envisions a scenario of a grid-independent battery-powered electric vehicle charging station network. The charging stations receive supplies from the energy storage system that absorbs renewable energy, contributing to a sustained DC demand that helps with revenues. Representative results are presented for two operation modes and different sets of weights assigned to the objectives. Substantial improvement in the profitability of combined applications over single stationary applications is shown. Pareto frontier of a reduced dimensional problem is obtained to show the trade-off between design objectives. This work could pave the road for future implementations of the new form of energy storage systems.<br>


Sign in / Sign up

Export Citation Format

Share Document