The solubility, microstructure, and chemical durability of Ce‐doped YIG ceramics designed as actinide waste forms

Author(s):  
Shilin Luo ◽  
Zhitong Xu ◽  
Jian Liu ◽  
Baoliang Xu ◽  
Shiyin Ji ◽  
...  
2008 ◽  
Vol 1124 ◽  
Author(s):  
Melody Lyn Carter ◽  
Hui Li ◽  
Yingjie Zhang ◽  
Andrew L Gillen ◽  
Eric R Vance

AbstractHot isostatically pressed (HIPed) glass-ceramics for the immobilization of uranium-rich intermediate-level wastes and Hanford K-basin sludges were designed. These were based on pyrochlore-structured Ca(1-x)U(1+y)Ti2O7 in glass, together with minor crystalline phases. Detailed microstructural, diffraction and spectroscopic characterization of selected glass-ceramic samples has been performed, and chemical durability is adequate, as measured by both MCC-1 and PCT-B leach tests.


1995 ◽  
Vol 412 ◽  
Author(s):  
W. J. Weber ◽  
R. C. Ewing ◽  
W. Lutze

AbstractZircon (ZrSiO4) is proposed as a waste form for excess weapons-grade plutonium. Zircon is an extremely durable ceramic that is often found as an accessory mineral in Precambrian terranes with ages up to 4 billion years. The chemical durability of zircon in groundwater far exceeds that of other waste forms, as modeled leach rates may be as low as 10-11g/m2d. At least 10 wt% Pu can substitute for Zr in zircon. Self-radiation damage from alpha decay leads to a crystalline-to-amorphous transformation that is modeled as a function of time and temperature for deep borehole conditions. Based on the results of this assessment, zircon could meet all necessary durability and criticality criteria required for a Pu waste form. The types of data used in this analysis are generally not available for other crystalline ceramics or glasses.


2018 ◽  
Vol 500 ◽  
pp. 373-380 ◽  
Author(s):  
Jen-Hsien Hsu ◽  
Jincheng Bai ◽  
Cheol-Woon Kim ◽  
Richard K. Brow ◽  
Joe Szabo ◽  
...  

MRS Advances ◽  
2018 ◽  
Vol 3 (20) ◽  
pp. 1093-1103 ◽  
Author(s):  
Junghune Nam ◽  
Saehwa Chong ◽  
Brian J. Riley ◽  
John S. McCloy

ABSTRACTNuclear energy is one option to meet rising electricity demands, although one concern of this technology is the proper capture and storage of radioisotopes produced during fission processes. One of the more difficult radioisotopes is 129 I due to its volatility and poor solubility in traditional waste forms such as borosilicate glass. Iodosodalite has been previously proposed as a viable candidate to immobilize iodine due to high iodine loading and good chemical durability. Iodosodalite was traditionally synthesized using solid state and hydrothermal techniques, but this paper discusses an aqueous synthesis approach to optimize and maximize the iodosodalite yield. Products were pressed into pellets and fired with glass binders. Chemical durability and iodine retention results are included.


1988 ◽  
Vol 127 ◽  
Author(s):  
W. Lutze ◽  
R. C. Ewing

ABSTRACTNuclear waste forms may be divided into two broad categories: (1) single phase glasses with minor crystalline components (e.g., borosilicate glasses) and (2) crystalline waste forms, either single phase (e.g., monazite) or polyphase (e.g., SYNROC). This paper reviews the materials properties data that are available for each of these two types of waste forms. The prinicipal data include: (1) physical, thermal and mechanical properties, (2) chemical durability; (3) radiation damage effects. Complete data are only available for borosilicate glasses and SYNROC; therefore, this comparison focuses on the performance assessment of borosilicate glass and SYNROC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Braeden M. Clark ◽  
Priyatham Tumurugoti ◽  
Shanmugavelayutham K. Sundaram ◽  
Jake W. Amoroso ◽  
James C. Marra

AbstractThe long-term performance, or resistance to elemental release, is the defining characteristic of a nuclear waste form. In the case of multiphase ceramic waste forms, correlating the long-term performance of multiphase ceramic waste forms in the environment to accelerated chemical durability testing in the laboratory is non-trivial owing to their complex microstructures. The fabrication method, which in turn affects the microstructure, is further compounding when comparing multiphase ceramic waste forms. In this work, we propose a “designer waste form” prepared via spark plasma sintering to limit interaction between phases and grain growth during consolidation, leading to monolithic high-density waste forms, which can be used as reference materials for comparing the chemical durability of multiphase waste forms. Designer waste forms containing varying amounts of hollandite in the presence of zirconolite and pyrochlore in a fixed ratio were synthesized. The product consistency test (PCT) and vapor hydration test (VHT) were used to assess the leaching behavior. Samples were unaffected by the VHT after 1500 h. As measured by the PCT, the fractional Cs release decreased as the amount of hollandite increased. Elemental release from the zirconolite and pyrochlore phases did not appear to significantly contribute to the elemental release from the hollandite phase in the designer waste forms.


2015 ◽  
Vol 41 (5) ◽  
pp. 6344-6349 ◽  
Author(s):  
Xirui Lu ◽  
Long Fan ◽  
Xiaoyan Shu ◽  
Sijin Su ◽  
Yi Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document