Design and thermodynamic analysis of a new multigenerational plant with modular high‐temperature gas‐cooled reactor

Author(s):  
Murat Koc ◽  
Yunus Emre Yuksel ◽  
Murat Ozturk
2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Michał Dudek ◽  
Zygmunt Kolenda ◽  
Marek Jaszczur ◽  
Wojciech Stanek

Nuclear energy is one of the possibilities ensuring energy security, environmental protection, and high energy efficiency. Among many newest solutions, special attention is paid to the medium size high-temperature gas-cooled reactors (HTGR) with wide possible applications in electric energy production and district heating systems. Actual progress can be observed in the literature and especially in new projects. The maximum outlet temperature of helium as the reactor cooling gas is about 1000 °C which results in the relatively low energy efficiency of the cycle not greater than 40–45% in comparison to 55–60% of modern conventional power plants fueled by natural gas or coal. A significant increase of energy efficiency of HTGR cycles can be achieved with the increase of helium temperature from the nuclear reactor using additional coolant heating even up to 1600 °C in heat exchanger/gas burner located before gas turbine. In this paper, new solution with additional coolant heating is presented. Thermodynamic analysis of the proposed solution with a comparison to the classical HTGR cycle will be presented showing a significant increase of energy efficiency up to about 66%.


2012 ◽  
Vol 99 ◽  
pp. 183-191 ◽  
Author(s):  
Po-Jui Li ◽  
Tzu-Chen Hung ◽  
Bau-Shei Pei ◽  
Jaw-Ren Lin ◽  
Ching-Chang Chieng ◽  
...  

Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document