Thermodynamic Analysis of Power Generation Cycles With High-Temperature Gas-Cooled Nuclear Reactor and Additional Coolant Heating Up to 1600 °C

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Michał Dudek ◽  
Zygmunt Kolenda ◽  
Marek Jaszczur ◽  
Wojciech Stanek

Nuclear energy is one of the possibilities ensuring energy security, environmental protection, and high energy efficiency. Among many newest solutions, special attention is paid to the medium size high-temperature gas-cooled reactors (HTGR) with wide possible applications in electric energy production and district heating systems. Actual progress can be observed in the literature and especially in new projects. The maximum outlet temperature of helium as the reactor cooling gas is about 1000 °C which results in the relatively low energy efficiency of the cycle not greater than 40–45% in comparison to 55–60% of modern conventional power plants fueled by natural gas or coal. A significant increase of energy efficiency of HTGR cycles can be achieved with the increase of helium temperature from the nuclear reactor using additional coolant heating even up to 1600 °C in heat exchanger/gas burner located before gas turbine. In this paper, new solution with additional coolant heating is presented. Thermodynamic analysis of the proposed solution with a comparison to the classical HTGR cycle will be presented showing a significant increase of energy efficiency up to about 66%.

Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinghan Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong

Nuclear safety goal is the basic standard for limiting the operational risks of nuclear power plants. The statistics of societal risks are the basis for nuclear safety goals. Core damage frequency (CDF) and large early release frequency (LERF) are typical probabilistic safety goals that are used in the regulation of water-cooled reactors currently. In fact, Chinese current probabilistic safety goals refer to the Nuclear Regulatory Commission (NRC) and the International Atomic Energy Agency (IAEA), and they are not based on Chinese societal risks. And the CDF and LERF proposed for water reactor are not suitable for high-temperature gas-cooled reactors (HTGR), because the design of HTGR is very different from that of water reactor. And current nuclear safety goals are established for single reactor rather than unit or site. Therefore, in this paper, the development of the safety goal of NRC was investigated firstly; then, the societal risks in China were investigated in order to establish the correlation between the probabilistic safety goal of multimodule HTGR and Chinese societal risks. In the end, some other matters about multireactor site were discussed in detail.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1187-1197 ◽  
Author(s):  
Marek Jaszczur ◽  
Michal Dudek ◽  
Zygmunt Kolenda

One of the most advanced and most effective technology for electricity generation nowadays based on a gas turbine combined cycle. This technology uses natural gas, synthesis gas from the coal gasification or crude oil processing products as the energy carriers but at the same time, gas turbine combined cycle emits SO2, NOx, and CO2 to the environment. In this paper, a thermodynamic analysis of environmentally friendly, high temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allows us to produce electricity with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency higher than 50% what is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by traditional (coal or lignite) power plant.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 2887-2895 ◽  
Author(s):  
CONSTANTIN POLITIS

The understanding of nanoscale interactions of nuclear materials will help to mastering the complex behavior of actinides and of fission products, and the interfacial behavior of fuel-cladding under extreme conditions. Ultrafine grained and nanostructured engineering materials are also suggested as protective armors on the plasma-facing first wall of D-T fusion power plants. We review the constitution and preparation by arc-melting and ball milling of ultrafine grained materials for the advanced nuclear reactor fuels UC, UC-W, UN, UN- Mo , and UN-W. We report also the preparation of the first wall armour materials nano-W, nano W-Y alloys, nano-graphite, and nano- B 4 C by high energy ball milling and their characterization by metallography, XRD, DSC and HRTEM.


2014 ◽  
Vol 1030-1032 ◽  
pp. 232-235
Author(s):  
Fu Juan Han ◽  
Jun Feng Li

Carbon-14 is a radionuclide, which is a by-product in the operation of various nuclear reactor facilities. it also came from the interaction of cosmic ray with nitrogen and hydrogen in the atmosphere globally. This article elaborates the source of the 14C in High-Temperature Gas-Cooled Reactor, the amount of 14C released to the environment, as well as the forms of carbon-14. Meanwhile, the author presents the environment impact of this radionuclide. This paper concluded that 14N (n, p) 14C reaction in the fuel spheres and coolant gas is major source, and CO2 is major release form. The conclusion could provide the references and suggestions for storage, disposal and release reduction of this type of waste.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Jianghai Li ◽  
Jia Meng ◽  
Xiaojing Kang ◽  
Zhenhai Long ◽  
Xiaojin Huang

High-temperature gas-cooled reactors (HTGR) can incorporate wireless sensor network (WSN) technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs). This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA) and support vector machine (SVM) are developed.


2017 ◽  
Vol 22 (3) ◽  
Author(s):  
OGNYAN DINOLOV

<p>Based on interpretation of existing developments, an aggregate model for energy audit and monitoring of the electric-energy efficiency in the coal processing systems in the fossil-fuel power plants is developed. The model takes into account the nominal power capacities of the available drives, by which the usability of the installed power capacity is considered and the interdependence between the power consumed and the relative consumption is avoided in determining the aggregate relative electric-power consumption. The model is justified by conducting an energy audit of a typical coal processing systems in operation. The results of this research can be a basis for the development of models of systems and systems for qualitatively new monitoring of the overall electric-energy efficiency in the fossil-fuel power plants.</p>


Sign in / Sign up

Export Citation Format

Share Document