scholarly journals Temporal variation in suspended sediment transport: linking sediment sources and hydro‐meteorological drivers

2019 ◽  
Vol 44 (13) ◽  
pp. 2587-2599 ◽  
Author(s):  
Kim Vercruysse ◽  
Robert C. Grabowski
2021 ◽  
Vol 9 (1) ◽  
pp. 123-144
Author(s):  
Magdalena Uber ◽  
Guillaume Nord ◽  
Cédric Legout ◽  
Luis Cea

Abstract. Soil erosion and suspended sediment transport understanding is an important issue in terms of soil and water resources management in the critical zone. In mesoscale watersheds (>10 km2) the spatial distribution of potential sediment sources within the catchment associated with rainfall dynamics is considered to be the main factor in the observed suspended sediment flux variability within and between runoff events. Given the high spatial heterogeneity that can exist for such scales of interest, distributed physically based models of soil erosion and sediment transport are powerful tools to distinguish the specific effect of structural and functional connectivity on suspended sediment flux dynamics. As the spatial discretization of a model and its parameterization can crucially influence how the structural connectivity of the catchment is represented in the model, this study analyzed the impact of modeling choices in terms of the contributing drainage area (CDA) threshold to define the river network and of Manning's roughness parameter (n) on the sediment flux variability at the outlet of two geomorphologically distinct watersheds. While the modeled liquid and solid discharges were found to be sensitive to these choices, the patterns of the modeled source contributions remained relatively similar when the CDA threshold was restricted to the range of 15 to 50 ha, with n restricted to the range 0.4–0.8 on the hillslopes and to 0.025–0.075 in the river. The comparison of the two catchments showed that the actual location of sediment sources was more important than the choices made during discretization and parameterization of the model. Among the various structural connectivity indicators used to describe the geological sources, the mean distance to the stream was the most relevant proxy for the temporal characteristics of the modeled sedigraphs.


2020 ◽  
Author(s):  
Magdalena Uber ◽  
Guillaume Nord ◽  
Cédric Legout ◽  
Luis Cea

Abstract. Soil erosion and suspended sediment transport understanding is an important issue in terms of soil and water resources management in the critical zone. In mesoscale watersheds (> 10 km2) the spatial distribution of potential sediment sources within the catchment associated to the rainfall dynamics are considered as the main factors of the observed suspended sediment flux variability within and between runoff events. Given the high spatial heterogeneity that can exist for such scales of interest, distributed physically based models of soil erosion and sediment transport are powerful tools to distinguish the specific effect of structural and functional connectivity on suspended sediment flux dynamics. As the spatial discretization of a model and its parameterization can crucially influence how structural connectivity of the catchment is represented in the model, this study analyzed the impact of modeling choices in terms of contributing drainage area (CDA) threshold to define the river network and of Manning's roughness parameter (n) on the sediment flux variability at the outlet of two geomorphological distinct watersheds. While the modelled liquid and solid discharges were found to be sensitive to these choices, the patterns of the modeled source contributions remained relatively similar when the CDA threshold was restricted to the range of 15 to 50 ha, n on the hillslopes to the range 0.4–0.8 and to 0.025–0.075 in the river. The comparison of both catchments showed that the actual location of sediment sources was more important than the choices made during discretization and parameterization of the model. Among the various structural connectivity indicators used to describe the geological sources, the mean distance to the stream was the most relevant proxy of the temporal characteristics of the modelled sedigraphs.


Author(s):  
Wenwen Shen ◽  
Terry Griffiths ◽  
Mengmeng Xu ◽  
Jeremy Leggoe

For well over a decade it has been widely recognised that existing models and tools for subsea pipeline stability design fail to account for the fact that seabed soils tend to become mobile well before the onset of pipeline instability. Despite ample evidence obtained from both laboratory and field observations that sediment mobility has a key role to play in understanding pipeline/soil interaction, no models have been presented previously which account for the tripartite interaction between the fluid and the pipe, the fluid and the soil, and the pipe and the soil. There are numerous well developed and widely used theories available to model pipe-fluid and pipe-soil interactions. A challenge lies in the way to develop a satisfactory fluid-soil interaction algorithm that has the potential for broad implementation under both ambient and extreme sea conditions due to the complexity of flow in the vicinity of a seabed pipeline or cable. A widely used relationship by Shields [1] links the bedload and suspended sediment transport to the seabed shear stresses. This paper presents details of computational fluid dynamics (CFD) research which has been undertaken to investigate the variation of seabed shear stresses around subsea pipelines as a parametric function of pipeline spanning/embedment, trench configuration and wave/current properties using the commercial RANS-based software ANSYS Fluent. The modelling work has been undertaken for a wide range of seabed geometries, including cases in 3D to evaluate the effects of finite span length, span depth and flow attack angle on shear stresses. These seabed shear stresses have been analysed and used as the basis for predicting sediment transport within the Pipe-Soil-Fluid (PSF) Interaction Model [2] in determining the suspended sediment concentration and the advection velocity in the vicinity of pipelines. The model has significant potential to be of use to operators who struggle with conventional stabilisation techniques for the pipelines, such as those which cross Australia’s North West Shelf, where shallow water depths, highly variable calcareous soils and extreme metocean conditions driven by frequent tropical cyclones result in the requirement for expensive and logistically challenging secondary stabilisation measures.


Sign in / Sign up

Export Citation Format

Share Document