Role of Snow Depth in the Influence of El Niño on Summer Climate Anomalies over East Asia

2019 ◽  
Author(s):  
Xuguang Sun ◽  
Yanfeng Wang ◽  
Xiu-Qun Yang
2017 ◽  
Vol 60 (6) ◽  
pp. 569-582
Author(s):  
WANG Yan-Feng ◽  
SUN Xu-Guang ◽  
YANG Xiu-Qun

2016 ◽  
Vol 29 (12) ◽  
pp. 4347-4359 ◽  
Author(s):  
Wenjun Zhang ◽  
Haiyan Li ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Andrew G. Turner

Abstract Previous studies have shown that the Indo-Pacific atmospheric response to ENSO comprises two dominant modes of variability: a meridionally quasi-symmetric response (independent of the annual cycle) and an antisymmetric response (arising from the nonlinear atmospheric interaction between ENSO variability and the annual cycle), referred to as the combination mode (C-mode). This study demonstrates that the direct El Niño signal over the tropics is confined to the equatorial region and has no significant impact on the atmospheric response over East Asia. The El Niño–associated equatorial anomalies can be expanded toward off-equatorial regions by the C-mode through ENSO’s interaction with the annual cycle. The C-mode is the prime driver for the development of an anomalous low-level anticyclone over the western North Pacific (WNP) during the El Niño decay phase, which usually transports more moisture to East Asia and thereby causes more precipitation over southern China. An atmospheric general circulation model is used that reproduces well the WNP anticyclonic anomalies when both El Niño sea surface temperature (SST) anomalies as well as the SST annual cycle are prescribed as boundary conditions. However, no significant WNP anticyclonic circulation anomaly appears during the El Niño decay phase when excluding the SST annual cycle. The analyses herein of observational data and model experiments suggest that the annual cycle plays a key role in the East Asian climate anomalies associated with El Niño through their nonlinear atmospheric interaction. Hence, a realistic simulation of the annual cycle is crucial in order to correctly capture the ENSO-associated climate anomalies over East Asia.


2006 ◽  
Vol 19 (24) ◽  
pp. 6433-6438 ◽  
Author(s):  
Edgar G. Pavia ◽  
Federico Graef ◽  
Jorge Reyes

Abstract The role of the Pacific decadal oscillation (PDO) in El Niño–Southern Oscillation (ENSO)-related Mexican climate anomalies during winter and summer is investigated. The precipitation and mean temperature data of approximately 1000 stations throughout Mexico are considered. After sorting ENSO events by warm phase (El Niño) and cold phase (La Niña) and prevailing PDO phase: warm or high (HiPDO) and cold or low (LoPDO), the authors found the following: 1) For precipitation, El Niño favors wet conditions during summers of LoPDO and during winters of HiPDO. 2) For mean temperature, cooler conditions are favored during La Niña summers and during El Niño winters, regardless of the PDO phase; however, warmer conditions are favored by the HiPDO during El Niño summers.


2012 ◽  
Vol 25 (21) ◽  
pp. 7574-7589 ◽  
Author(s):  
Yu Kosaka ◽  
J. S. Chowdary ◽  
Shang-Ping Xie ◽  
Young-Mi Min ◽  
June-Yi Lee

Predictability of summer climate anomalies over East Asia and the northwestern Pacific is investigated using observations and a multimodel hindcast ensemble initialized on 1 May for the recent 20–30 yr. Summertime East Asia is under the influence of the northwestern Pacific subtropical high (PASH). The Pacific–Japan (PJ) teleconnection pattern, a meridional dipole of sea level pressure variability, affects the northwestern PASH. The forecast models generally capture the association of the PJ pattern with the El Niño–Southern Oscillation (ENSO). The Silk Road pattern, a wave train along the summer Asian jet, is another dominant teleconnection that influences the northwestern PASH and East Asia. In contrast to the PJ pattern, observational analysis reveals a lack of correlations between the Silk Road pattern and ENSO. Coupled models cannot predict the temporal phase of the Silk Road pattern, despite their ability to reproduce its spatial structure as the leading mode of atmospheric internal variability. Thus, the pattern is rather unpredictable at monthly to seasonal lead, limiting the seasonal predictability for summer in East Asia. The anomalous summer of 2010 in East Asia is a case in point, illustrating the interference by the Silk Road pattern. Canonical anomalies associated with a decayed El Niño and developing La Niña would have the PJ pattern bring a cold summer to East Asia in 2010. In reality, the Silk Road pattern overwhelmed this tendency, bringing a record-breaking hot summer instead. A dynamical model experiment indicates that European blocking was instrumental in triggering the Silk Road pattern in the 2010 summer.


2009 ◽  
Vol 22 (3) ◽  
pp. 730-747 ◽  
Author(s):  
Shang-Ping Xie ◽  
Kaiming Hu ◽  
Jan Hafner ◽  
Hiroki Tokinaga ◽  
Yan Du ◽  
...  

Abstract Significant climate anomalies persist through the summer (June–August) after El Niño dissipates in spring over the equatorial Pacific. They include the tropical Indian Ocean (TIO) sea surface temperature (SST) warming, increased tropical tropospheric temperature, an anomalous anticyclone over the subtropical northwest Pacific, and increased mei-yu–baiu rainfall over East Asia. The cause of these lingering El Niño effects during summer is investigated using observations and an atmospheric general circulation model (GCM). The results herein indicate that the TIO warming acts like a capacitor anchoring atmospheric anomalies over the Indo–western Pacific Oceans. It causes tropospheric temperature to increase by a moist-adiabatic adjustment in deep convection, emanating a baroclinic Kelvin wave into the Pacific. In the northwest Pacific, this equatorial Kelvin wave induces northeasterly surface wind anomalies, and the resultant divergence in the subtropics triggers suppressed convection and the anomalous anticyclone. The GCM results support this Kelvin wave–induced Ekman divergence mechanism. In response to a prescribed SST increase over the TIO, the model simulates the Kelvin wave with low pressure on the equator as well as suppressed convection and the anomalous anticyclone over the subtropical northwest Pacific. An additional experiment further indicates that the north Indian Ocean warming is most important for the Kelvin wave and northwest Pacific anticyclone, a result corroborated by observations. These results have important implications for the predictability of Indo–western Pacific summer climate: the spatial distribution and magnitude of the TIO warming, rather than simply whether there is an El Niño in the preceding winter, affect summer climate anomalies over the Indo–western Pacific and East Asia.


2016 ◽  
Vol 52 (12) ◽  
pp. 7293-7308 ◽  
Author(s):  
Jin-Soo Kim ◽  
Jong-Seong Kug
Keyword(s):  
El Niño ◽  

Sign in / Sign up

Export Citation Format

Share Document