scholarly journals High Resolution Polar Regional Climate Model NHM-SMAP for the Greenland Ice Sheet

2019 ◽  
Author(s):  
Masashi Niwano ◽  
Teruo Aoki ◽  
Akihiro Hashimoto ◽  
Sumito Matoba ◽  
Satoru Yamaguchi ◽  
...  
2013 ◽  
Vol 59 (216) ◽  
pp. 733-749 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
J.J. Fürst ◽  
F.M. Nick ◽  
M.L. Andersen ◽  
...  

AbstractPhysically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31 % higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.


2012 ◽  
Vol 6 (3) ◽  
pp. 695-711 ◽  
Author(s):  
B. Franco ◽  
X. Fettweis ◽  
C. Lang ◽  
M. Erpicum

Abstract. With the aim to force an ice dynamical model, the Greenland ice sheet (GrIS) surface mass balance (SMB) was modelled at different spatial resolutions (15–50 km) for the period 1990–2010, using the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-INTERIM reanalysis. This comparison revealed that (i) the inter-annual variability of the SMB components is consistent within the different spatial resolutions investigated, (ii) the MAR model simulates heavier precipitation on average over the GrIS with decreasing spatial resolution, and (iii) the SMB components (except precipitation) can be derived from a simulation at lower resolution with an "intelligent" interpolation. This interpolation can also be used to approximate the SMB components over another topography/ice sheet mask of the GrIS. These results are important for the forcing of an ice dynamical model needed to enable future projections of the GrIS contribution to sea level rise over the coming centuries.


2006 ◽  
Vol 27 (5) ◽  
pp. 531-541 ◽  
Author(s):  
Xavier Fettweis ◽  
Hubert Gallée ◽  
Filip Lefebre ◽  
Jean-Pascal van Ypersele

2015 ◽  
Vol 9 (1) ◽  
pp. 1177-1208 ◽  
Author(s):  
B. Noël ◽  
W. J. van de Berg ◽  
E. van Meijgaard ◽  
P. Kuipers Munneke ◽  
R. S. W. van de Wal ◽  
...  

Abstract. We discuss Greenland ice sheet (GrIS) surface mass balance (SMB) differences between the updated polar version of the regional climate model RACMO2.3 and the previous version RACMO2.1. Among other revisions, the updated model includes an adjusted rainfall-to-snowfall conversion, producing exclusively snowfall under freezing conditions; this especially favours snowfall in summer when upper air temperatures reach the freezing point. Summer snowfall in the ablation zone of the GrIS has a pronounced effect on melt rates, affecting modelled GrIS SMB in two ways. By covering relatively dark ice with highly reflective fresh snow, these summer snowfall have the potential to locally reduce melt rates in the ablation zone of the GrIS through a snow-albedo-melt feedback. At larger scales, SMB changes are driven by differences in orographic precipitation following a shift in large-scale circulation, in combination with enhanced moisture to precipitation conversion for warm to moderately cold conditions. A detailed comparison of model output with long-term observations from automatic weather stations and ablation stakes in west Greenland shows that the model update generally improves the simulated SMB-elevation gradient as well as the representation of the surface energy balance, although significant biases remain.


2012 ◽  
Vol 6 (3) ◽  
pp. 1611-1635 ◽  
Author(s):  
J. T. M. Lenaerts ◽  
M. R. van den Broeke ◽  
J. H. van Angelen ◽  
E. van Meijgaard ◽  
S. J. Déry

Abstract. This paper presents the drifting snow climate of the Greenland ice sheet, using output from a high-resolution (~11 km) regional climate model (RACMO2). Because reliable direct observations of drifting snow do not exist, we evaluate the modeled near-surface climate instead, using Automatic Weather Station (AWS) observations from the K-transect and find that RACMO2 realistically simulates near-surface wind speed and relative humidity, two variables that are important for drifting snow. Integrated over the ice sheet, drifting snow sublimation (SUds) equals 24 ± 3 Gt yr−1, and is significantly larger than surface sublimation (SUs, 16 ± 2 Gt yr−1). SUds strongly varies between seasons, and is only important in winter, when surface sublimation and runoff are small. A rapid transition exists between the winter season, when snowfall and SUds are important, and the summer season, when snowmelt is significant, which increases surface snow density and thereby limits drifting snow processes. Drifting snow erosion (ERds) is only important on a regional scale. In recent decades, following decreasing wind speed and rising near-surface temperatures, SUds exhibits a negative trend (0.1 ± 0.1 Gt yr−1), which is compensated by an increase in SUs of similar magnitude.


2010 ◽  
Vol 4 (2) ◽  
pp. 603-639 ◽  
Author(s):  
J. Ettema ◽  
M. R. van den Broeke ◽  
E. van Meijgaard ◽  
W. J. van de Berg

Abstract. The near-surface climate of the Greenland ice sheet is characterized by persistent katabatic winds and quasi-permanent temperature deficit. Using a high resolution (11 km) regional climate model allows for detailed study of the spatial variability in these phenomena and the underlying atmospheric processes. The near-surface temperature distribution over the ice sheet is clearly affected by elevation, latitude, large scale advection, meso-scale topographic features and the occurrence of summer melt. The lowest annual temperatures of −30.5 °C are found north of the highest elevations of the GrIS, whereas the lowest southern margins are warmest (−3.5 °C). Over the ice sheet, a persistent katabatic wind system develops due to radiative surface cooling and the gently slope of the surface. The strongest wind speeds are seen in the northeast where the strong large scale winds, low cloud cover and concave surface force a continuous supply of cold air, which enhances the katabatic forcing. The radiative cooling of the surface is controlled by the net longwave emission and transport of heat towards the surface by turbulence. In summer this mechanism is much weaker, leading to less horizontal variability in near-surface temperatures and wind speed.


2017 ◽  
Vol 4 ◽  
Author(s):  
Peter L. Langen ◽  
Robert S. Fausto ◽  
Baptiste Vandecrux ◽  
Ruth H. Mottram ◽  
Jason E. Box

2014 ◽  
Vol 8 (1) ◽  
pp. 181-194 ◽  
Author(s):  
T. L. Edwards ◽  
X. Fettweis ◽  
O. Gagliardini ◽  
F. Gillet-Chaulet ◽  
H. Goelzer ◽  
...  

Abstract. We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m−3 a−1 for the north, and 1.91 (1.03 to 2.61) kg m−3 a−1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m−3 a−1 in the north, and 0.07 (−0.07 to 0.59) kg m−3 a−1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).


Sign in / Sign up

Export Citation Format

Share Document