Temporal Change in Near-source Attenuation probably due to the pore pressure diffusion in the Source Region of the Intense Earthquake Swarm in the Yamagata-Fukushima border, NE Japan

2019 ◽  
Author(s):  
Keisuke Yoshida
2015 ◽  
Vol 117 (13) ◽  
pp. 134902 ◽  
Author(s):  
Duoxing Yang ◽  
Qi Li ◽  
Lianzhong Zhang

Author(s):  
Josimar A. Silva ◽  
Hannah Byrne ◽  
Andreas Plesch ◽  
John H. Shaw ◽  
Ruben Juanes

ABSTRACT The injection experiment conducted at the Rangely oil field, Colorado, was a pioneering study that showed qualitatively the correlation between reservoir pressure increases and earthquake occurrence. Here, we revisit this field experiment using a mechanistic approach to investigate why and how the earthquakes occurred. Using data collected from decades of field operations, we build a geological model for the Rangely oil field, perform reservoir simulation to history match pore-pressure variations during the experiment, and perform geomechanical simulations to obtain stresses at the main fault, where the earthquakes were sourced. As a viable model, we hypothesize that pressure diffusion occurred through a system of highly permeable fractures, adjacent to the main fault in the field, connecting the injection wells to the area outside of the injection interval where intense seismic activity occurred. We also find that the main fault in the field is characterized by a friction coefficient μ  ≈  0.7—a value that is in good agreement with the classical laboratory estimates conducted by Byerlee for a variety of rock types. Finally, our modeling results suggest that earthquakes outside of the injection interval were released tectonic stresses and thus should be classified as triggered, whereas earthquakes inside the injection interval were driven mostly by anthropogenic pore-pressure changes and thus should be classified as induced.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. KS105-KS118 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Hydraulic fracturing in low-permeability hydrocarbon reservoirs creates/reactivates a fracture network leading to microseismic events. We have developed a simplified model of the evolution of the microseismic cloud based on the opening of a planar fracture cavity and its effect on elastic stresses and pore pressure diffusion during fluid injection in hydraulic fracturing treatments. Using a material balance equation, we compute the crack tip propagation over time assuming that the hydraulic fracture is shaped as a single penny-shaped cavity. Results indicate that in low-permeability formations, the crack tip propagates much faster than the pore pressure diffusion front thereby triggering the microseismic events farthest from the injection domain at any given time during fluid injection. We use the crack tip propagation to explain the triggering front observed in distance versus time plots of published microseismic data examples from hydraulic fracturing treatments of low-permeability hydrocarbon reservoirs. We conclude that attributing the location of the microseismic triggering front purely to pore pressure diffusion from the injection point may lead to incorrect estimates of the hydraulic diffusivity by multiple orders of magnitude for low-permeability formations. Moreover, the opening of the fracture cavity creates stress shadow zones perpendicular to the principal fracture walls in which microseismic triggering due to the elastic stress perturbations is suppressed. Microseismic triggering in this stress shadow region may be attributed mainly to pore pressure diffusion. We use the width, instead of the longest size, of the microseismic cloud to obtain an enhanced diffusivity measure, which may be useful for subsequent production simulations.


Sign in / Sign up

Export Citation Format

Share Document