Non-Parametric Confidence Sets for Change Points in Time Series of Extremes

2021 ◽  
Author(s):  
Ronald van Nooijen ◽  
Alla Kolechkina
2019 ◽  
Author(s):  
Vincenzo Totaro ◽  
Andrea Gioia ◽  
Vito Iacobellis

Abstract. The need of fitting time series characterized by the presence of trend or change points has generated in latest years an increased interest in the investigation of non-stationary probability distributions. Considering that the available hydrological time series can be recognized as the observable part of a stochastic process with a definite probability distribution, two main topics can be tackled in this context: the first one is related to the definition of an objective criterion for choosing whether the stationary hypothesis can be adopted, while the second one regards the effects of non-stationarity on the estimation of distribution parameters and quantiles for assigned return period and flood risk evaluation. Although the time series trend or change points can be recognized using classical tests available in literature (e.g. Mann–Kendal or CUSUM test), for design purpose it is still required the correct selection of the stationary or non-stationary probability distribution. By this light, the focus is shifted toward model selection criteria which implies the use of parametric methods with all related issues on parameters estimation. The aim of this study is to compare the performance of parametric and non-parametric methods for trend detection analysing their power and focusing on the use of traditional model selection tools (e.g. Akaike Information Criterion and Likelihood Ratio test) within this context. Power and efficiency of parameter estimation, including the trend coefficient, were investigated through Monte Carlo simulations using Generalized Extreme Value distribution as parent with selected parameter sets.


2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Gholamreza Hesamian ◽  
Mohammad Ghasem Akbari

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hitoshi Iuchi ◽  
Michiaki Hamada

Abstract Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere–Terpstra–Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.


2015 ◽  
Vol 7 (2) ◽  
pp. 262-279 ◽  
Author(s):  
Zhichao Guo ◽  
Yuanhua Feng ◽  
Thomas Gries

Purpose – The purpose of this paper is to investigate changes of China’s agri-food exports to Germany caused by China’s accession to WTO and the global financial crisis in a quantitative way. The paper aims to detect structural breaks and compare differences before and after the change points. Design/methodology/approach – The structural breaks detection procedures in this paper can be applied to find out two different types of change points, i.e. in the middle and at the end of one time series. Then time series and regression models are used to compare differences of trade relationship before and after the detected change points. The methods can be employed in any economic series and work well in practice. Findings – The results indicate that structural breaks in 2002 and 2009 are caused by China’s accession to WTO and the financial crisis. Time series and regression models show that the development of China’s exports to Germany in agri-food products has different features in different sub-periods. Before 1999, there is no significant relationship between China’s exports to Germany and Germany’s imports from the world. Between 2002 and 2008 the former depends on the latter very strongly, and China’s exports to Germany developed quickly and stably. It decreased, however suddenly in 2009, caused by the great reduction of Germany’s imports from the world in that year. But China’s market share in Germany still had a small gain. Analysis of two categories in agri-food trade also leads to similar conclusions. Comparing the two events we see rather different patterns even if they both indicate structural breaks in the development of China’s agri-food exports to Germany. Originality/value – This paper partly originally proposes two statistical algorithms for detecting different kinds of structural breaks in the middle part and at the end of a short-time series, respectively.


Sign in / Sign up

Export Citation Format

Share Document