Trophic state assessment of a freshwater Himalayan lake using Landsat 8 OLI satellite Landsat 8 OLI, Secchi disk depth (Z SD ), Trophic State Index (TSI)

2021 ◽  
Author(s):  
Fayma Mushtaq ◽  
mili lala ◽  
Afaan Gulzar Mantoo
2017 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Kusuma Wardani Laksitaningrum ◽  
Wirastuti Widyatmanti

<p align="center"><strong>ABSTRAK</strong></p><p class="abstrak">Waduk Gajah Mungkur (WGM) adalah bendungan buatan yang memiliki luas genangan maksimum 8800 ha, terletak di Desa Pokoh Kidul, Kecamatan Wonogiri, Kabupaten Wonogiri. Kondisi perairan WGM dipengaruhi oleh faktor klimatologis, fisik, dan aktivitas manusia yang dapat menyumbang nutrisi sehingga mempengaruhi status trofiknya. Tujuan dari penelitian ini adalah mengkaji kemampuan citra Landsat 8 OLI untuk memperoleh parameter-parameter yang digunakan untuk menilai status trofik, menentukan dan memetakan status trofik yang diperoleh dari citra Landsat 8 OLI, dan mengevaluasi hasil pemetaan dan manfaat citra penginderaan jauh untuk identifikasi status trofik WGM. Identifikasi status trofik dilakukan berdasarkan metode <em>Trophic State Index</em> (TSI) Carlson (1997) menggunakan tiga parameter yaitu kejernihan air, total fosfor, dan klorofil-a. Model yang diperoleh berdasar pada rumus empiris dari hasil uji regresi antara pengukuran di lapangan dan nilai piksel di citra Landsat 8 OLI. Model dipilih berdasarkan nilai koefisien determinasi (R<sup>2</sup>) tertinggi. Hasil penelitian merepresentasikan bahwa nilai R<sup>2</sup> kejernihan air sebesar 0,813, total fosfor sebesar 0,268, dan klorofil-a sebesar 0,584. Apabila nilai R<sup>2 </sup>mendekati 1, maka semakin baik model regresi dapat menjelaskan suatu parameter status trofik. Berdasarkan hasil kalkulasi diperoleh distribusi yang terdiri dari kelas eutrofik ringan, eutrofik sedang, dan eutrofik berat yaitu pada rentang nilai indeks 50,051 – 80,180. Distribusi terbesar adalah eutrofik sedang. Hal tersebut menunjukkan tingkat kesuburan perairan yang tinggi dan dapat membahayakan makhluk hidup lain.</p><p><strong>Kata kunci: </strong>Waduk Gajah Mungkur, citra Landsat 8 OLI, regresi, TSI, status trofik</p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Gajah Mungkur Reservoir is an artificial dam that has a maximum inundated areas of 8800 ha, located in Pokoh Kidul Village, Wonogiri Regency. The reservoir’s water conditions are affected by climatological and physical factors, as well as human activities that can contribute to nutrients that affect its trophic state. This study aimed to assess the Landsat 8 OLI capabilities to obtain parameters that are used to determine its trophic state, identifying and mapping the trophic state based on parameters derived from Landsat 8 OLI, and evaluating the results of the mapping and the benefits of remote sensing imagery for identification of its trophic state. Identification of trophic state is based on Trophic State Index (TSI) Carlson (1997), which uses three parameters there are water clarity, total phosphorus, and chlorophyll-a. The model is based on an empirical formula of regression between measurements in the field and the pixel values in Landsat 8 OLI. Model is selected on the highest value towards coefficient of determination (R<sup>2</sup>). The results represented that R<sup>2</sup> of water clarity is 0.813, total phosphorus is 0.268, and chlorophyll-a is 0.584. If R<sup>2</sup> close to 1, regression model will describe the parameters of the trophic state better. Based on the calculation the distribution consists of mild eutrophic, moderate eutrophic, and heavy eutrophic that has index values from 50.051 to 80.18. The most distribution is moderate eutrophication, and it showed the high level of trophic state and may harm other living beings.</p><p><strong><em>Keywords: </em></strong><em>Gajah Mungkur Reservoir, </em><em>L</em><em>andsat 8 OLI satellite imagery, regression, TSI, trophic state</em></p>


2019 ◽  
Vol 35 (7) ◽  
pp. 759-780 ◽  
Author(s):  
Sujit Kumar Jally ◽  
Akhila Kumar Mishra ◽  
Sachikanta Balabantaray

2021 ◽  
Vol 13 (10) ◽  
pp. 1988
Author(s):  
Minqi Hu ◽  
Ronghua Ma ◽  
Zhigang Cao ◽  
Junfeng Xiong ◽  
Kun Xue

Remote monitoring of trophic state for inland waters is a hotspot of water quality studies worldwide. However, the complex optical properties of inland waters limit the potential of algorithms. This research aims to develop an algorithm to estimate the trophic state in inland waters. First, the turbid water index was applied for the determination of optical water types on each pixel, and water bodies are divided into two categories: algae-dominated water (Type I) and turbid water (Type II). The algal biomass index (ABI) was then established based on water classification to derive the trophic state index (TSI) proposed by Carlson (1977). The results showed a considerable precision in Type I water (R2 = 0.62, N = 282) and Type II water (R2 = 0.57, N = 132). The ABI-derived TSI outperformed several band-ratio algorithms and a machine learning method (RMSE = 4.08, MRE = 5.46%, MAE = 3.14, NSE = 0.64). Such a model was employed to generate the trophic state index of 146 lakes (> 10 km2) in eastern China from 2013 to 2020 using Landsat-8 surface reflectance data. The number of hypertrophic and oligotrophic lakes decreased from 45.89% to 21.92% and 4.11% to 1.37%, respectively, while the number of mesotrophic and eutrophic lakes increased from 12.33% to 23.97% and 37.67% to 52.74%. The annual mean TSI for the lakes in the lower reaches of the Yangtze River basin was higher than that in the middle reaches of the Yangtze River and Huai River basin. The retrieval algorithm illustrated the applicability to other sensors with an overall accuracy of 83.27% for moderate-resolution imaging spectroradiometer (MODIS) and 82.92% for Sentinel-3 OLCI sensor, demonstrating the potential for high-frequency observation and large-scale simulation capability. Our study can provide an effective trophic state assessment and support inland water management.


2016 ◽  
Vol 18 (2) ◽  
pp. 19-28
Author(s):  
Roumen Kalchev ◽  
Árpád Berczik ◽  
Michaela Beshkova ◽  
Mária Dinka ◽  
Hristina Kalcheva ◽  
...  

Abstract The phytoplankton limitation conditions in a few Bulgarian and Hungarian wetlands and in two more sampling sites, one for each Danube stretch, were investigated by means of trophic state index of Carlson (1977) for phytoplankton chlorophyll-a (CHL), Secchi disk depths (SD), total phosphorus (TP), and total nitrogen (TN) concentrations. Phytoplankton of both river sites was not limited by non-algal turbidity, nor was they phosphorus and nitrogen limited. In summer months the studied wetlands were predominantly nitrogen limited, while in spring and autumn limitation by non-algal turbidity prevailed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mukesh Gupta

This paper proposes a new nitrogen-based trophic state index (TSI) for the estimation of status of eutrophication in a lagoon system. Nitrite-nitrogen (NO2-N) is preferable because of its greater abundance in Chilika lagoon and its relation to other criteria of trophic state, for example, chlorophyll-a (Chl-a) and Secchi disk depth (SDD). Nitrite is preferable over nitrate because the former decreases the fluorescence and affects photosynthesis, thereby controlling primary production. This paper also computes TSI using Chl-a and SDD. The three parameters account for the biological, chemical, and physical characteristics of the lagoon. It will be possible to estimate the TSI of freshwater and brackish water lagoons and other water bodies using the new expressions taking into consideration the spatial and temporal variability in the dataset. Depending on the data availability, alternative TSI (Chl-a) and TSI (SDD) can account for the biological and physical contributions to eutrophication. The estimated TSI can account for Chl-a and NO2-N up to 322.18 mg m−3 and 61.99 μg L−1, respectively. The TSI based on these three parameters can serve as a complimentary and predictive tool for lagoon management and field programs to monitor the health of a lagoon.


2010 ◽  
Vol 75 (5) ◽  
pp. 717-732 ◽  
Author(s):  
Ivan Grzetic ◽  
Natasa Camprag

The Palic Lake is a shallow lake typical for the Pannonian Plain. Due inadequate water quality, it was dried out in 1971 and re-established in 1977 and since than its trophicity has been worsening. Investigation of the long-term changes in the trophic state of this lake were tracked over the total phosphorous (TP), total nitrogen (TN), chlorophyll-a and Secchi disk transparency (SD transparency), expressed as the Carlson Trophic State Index (TSI). Regarding the TSI values, the water of the Palic Lake has been constantly evolving from eutrophic to hypereutrophic. TN/TP values < 10 indicate that nitrogen is the limiting factor for algal growth.


2020 ◽  
Vol 42 (9) ◽  
pp. 415-423
Author(s):  
Jongjin Baik ◽  
Jongmin Park ◽  
Minha Choi

Objectives : Remote sensing of water quality parameters (WQPs) has been widely applied along with the emerging importance of obtaining the spatial pattern of water quality at inland reservoir. This study retrieved the Total Phosphorus (TP) via remote sensing imagery at Daecheong reservoir and used it for acquiring the spatial distribution of Trophic State Index (TSI).Methods : First, stepwise regression for TP was established using the ground-based TP measurement and reflectance of Landsat 8 collocated in space and time. With the developed regression model, we estimated the spatial distribution of TSI and evaluated the severity of eutrophication at Daecheong reservoir.Results and Discussion : The result confirmed that predicted TP yielded reasonable statistics compared against measured TP with R<sup>2</sup> of 0.956 and p-value of 0.022. Seasonal variation of TP was highly influenced by the precipitation. Similarly, precipitation also influenced to the spatial pattern of TSI. Before the rainfall event (e.g., August 22 2018) at Daecheong reservoir, TSI metric indicated the oligotrographic stage. However, TSI of Daecheong reservoir after the rainfall (e.g., October 25 2018) indicated the mesotrophic and eutrophic stage.Conclusions : These results confirmed that the retrieval of WQP from remote sensing imagery can serve as a robustness tool to monitor the water quality over the large scale area.


2018 ◽  
Vol 55 (4C) ◽  
pp. 85
Author(s):  
Nguyen Anh Bac

Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies. This work identifies the eutrophication status of 6 small and shallow lakes, including Hoan Kiem, Ba Mau, Bay Mau, Dam Tri, Truc Bach and Hai Ba Trung, in the Hanoiurban area using an empirical model developed from the in situ trophic state index (TSI) and Landsat 8 satellite data acquired on 21 September 2016 and 10 December 2016. The strong correlation between TSI values and the reflectance ratio of Landsat 8 band 3 versus band 2 (R2 = 0.69) allowed the quantification of the TSI by an exponential function (MSE = 0.04). Validation of the model for other water samples collected on the dates shows a high accuracy (R2 = 0.85; MSE = 0.4). Maps of TSI over the 6 lakes on the two dates surveyed clarified the eutrophication status of these lakes in autumn 2016 and demonstrate the trend in identifying the distribution of TSI from space. Study methods and data stated in this study confirm the high applicability of Landsat 8 satellite data for monitoring shallow lake eutrophication status.


Sign in / Sign up

Export Citation Format

Share Document