Hydrological effects on seismic-noise monitoring in karstic media

2021 ◽  
Author(s):  
Carlos Almagro Vidal ◽  
Lucia Zaccarelli ◽  
Francesco Pintori ◽  
Pier Luigi Bragato ◽  
Enrico Serpelloni
Author(s):  
C. Almagro Vidal ◽  
L. Zaccarelli ◽  
F. Pintori ◽  
P. L. Bragato ◽  
E. Serpelloni

2010 ◽  
Vol 182 (3) ◽  
pp. 1478-1492 ◽  
Author(s):  
A. Gallego ◽  
R. M. Russo ◽  
D. Comte ◽  
V. I. Mocanu ◽  
R. E. Murdie ◽  
...  

Landslides ◽  
2021 ◽  
Author(s):  
Chuang Song ◽  
Chen Yu ◽  
Zhenhong Li ◽  
Veronica Pazzi ◽  
Matteo Del Soldato ◽  
...  

AbstractInterferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving landslide exhibiting multiple failure surfaces. The landslide body involves a town of around 6000 inhabitants, Villa de la Independencia (Bolivia), where extensive damages to buildings have been observed. To investigate the spatial-temporal characteristics of the landslide motion, Sentinel-1 displacement time series from October 2014 to December 2019 were produced. A new geometric inversion method is proposed to determine the best-fit sliding direction and inclination of the landslide. Our results indicate that the landslide is featured by a compound movement where three different blocks slide. This is further evidenced by seismic noise measurements which identified that the different dynamic characteristics of the three sub-blocks were possibly due to the different properties of shallow and deep slip surfaces. Determination of the slip surface depths allows for estimating the overall landslide volume (9.18 · 107 m3). Furthermore, Sentinel-1 time series show that the landslide movements manifest substantial accelerations in early 2018 and 2019, coinciding with increased precipitations in the late rainy season which are identified as the most likely triggers of the observed accelerations. This study showcases  the potential of integrating InSAR and seismic noise techniques to understand the landslide mechanism from ground to subsurface.


2019 ◽  
Vol 23 (4) ◽  
pp. 1867-1883 ◽  
Author(s):  
Igor Pavlovskii ◽  
Masaki Hayashi ◽  
Daniel Itenfisu

Abstract. Snowpack accumulation and depletion are important elements of the hydrological cycle in the Canadian prairies. The surface runoff generated during snowmelt is transformed into streamflow or fills numerous depressions driving the focussed recharge of groundwater in this dry setting. The snowpack in the prairies can undergo several cycles of accumulation and depletion in a winter. The timing of the melt affects the mechanisms of snowpack depletion and their hydrological implications. The effects of midwinter melts were investigated at four instrumented sites in the Canadian prairies. Unlike net radiation-driven snowmelt during spring melt, turbulent sensible heat fluxes were the dominant source of energy inputs for midwinter melt occurring in the period with low solar radiation inputs. Midwinter melt events affect several aspects of hydrological cycle with lower runoff ratios than subsequent spring melt events, due to their role in the timing of the focussed recharge. Remote sensing data have shown that midwinter melt events regularly occur under the present climate throughout the Canadian prairies, indicating applicability of the study findings throughout the region.


Sign in / Sign up

Export Citation Format

Share Document