scholarly journals Development of a High-Latitude Convection Model by Application of Machine Learning to SuperDARN observations

2021 ◽  
Author(s):  
William A. Bristow ◽  
Charles Topliff ◽  
Morris B. Cohen
Space Weather ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 1817-1846 ◽  
Author(s):  
Ryan M. McGranaghan ◽  
Anthony J. Mannucci ◽  
Brian Wilson ◽  
Chris A Mattmann ◽  
Richard Chadwick

2009 ◽  
Vol 27 (8) ◽  
pp. 3077-3087 ◽  
Author(s):  
M. Förster ◽  
Y. I. Feldstein ◽  
S. E. Haaland ◽  
L. A. Dremukhina ◽  
L. I. Gromova ◽  
...  

Abstract. Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for more than seven and a half years (2001–2008) have been used to derive a statistical model of the high-latitude electric potential distribution for summer conditions. Based on potential pattern for different orientations of the interplanetary magnetic field (IMF) in the GSM y-z-plane, basic convection pattern (BCP) were derived, that represent the main characteristics of the electric potential distribution in dependence on the IMF. The BCPs comprise the IMF-independent potential distribution as well as patterns, which describe the dependence on positive and negative IMFBz and IMFBy variations. The full set of BCPs allows to describe the spatial and temporal variation of the high-latitude electric potential (ionospheric convection) for any solar wind IMF condition near the Earth's magnetopause within reasonable ranges. The comparison of the Cluster/EDI model with the IZMEM ionospheric convection model, which was derived from ground-based magnetometer observations, shows a good agreement of the basic patterns and its variation with the IMF. According to the statistical models, there is a two-cell antisunward convection within the polar cap for northward IMFBz+≤2 nT, while for increasing northward IMFBz+ there appears a region of sunward convection within the high-latitude daytime sector, which assumes the form of two additional cells with sunward convection between them for IMFBz+≈4–5 nT. This results in a four-cell convection pattern of the high-latitude convection. In dependence of the ±IMFBy contribution during sufficiently strong northward IMFBz conditions, a transformation to three-cell convection patterns takes place.


2021 ◽  
Vol 2021 (11) ◽  
pp. 033
Author(s):  
Nestor Mirabal ◽  
Ana Bonaca

Abstract The detection of dark matter subhalos without a stellar component in the Galactic halo remains a challenge. We use supervised machine learning to identify high-latitude gamma-ray sources with dark matter-like spectra among unassociated gamma-ray sources in the 4FGL-DR2. Out of 843 4FGL-DR2 unassociated sources at |b| ≥ 10°, we select 73 dark matter subhalo candidates. Of the 69 covered by the Neil Gehrels Swift Observatory (Swift), 17 show at least one X-ray source within the 95% LAT error ellipse and 52 where we identify no new sources. This latest inventory of dark subhalos candidates allows us to investigate the possible dark matter substructure responsible for the perturbation in the GD-1 stellar stream. In particular, we examine the possibility that the alleged GD-1 dark subhalo may appear as a 4FGL-DR2 gamma-ray source from dark matter annihilation into Standard Model particles.


Nature ◽  
2005 ◽  
Vol 438 (7065) ◽  
pp. 193-196 ◽  
Author(s):  
Moritz Heimpel ◽  
Jonathan Aurnou ◽  
Johannes Wicht

2001 ◽  
Vol 27 (8) ◽  
pp. 1377-1380 ◽  
Author(s):  
P.R. Smith ◽  
P.L. Dyson ◽  
D.P. Monselesan ◽  
R.J. Morris

2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document