Machine Learning-based Investigation of Feature Importance for High-latitude Ionospheric Scintillation Forecasting

Author(s):  
Alexis J. Wu ◽  
Yunxiang Liu
Space Weather ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 1817-1846 ◽  
Author(s):  
Ryan M. McGranaghan ◽  
Anthony J. Mannucci ◽  
Brian Wilson ◽  
Chris A Mattmann ◽  
Richard Chadwick

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1620.1-1621
Author(s):  
J. Lee ◽  
H. Kim ◽  
S. Y. Kang ◽  
S. Lee ◽  
Y. H. Eun ◽  
...  

Background:Tumor necrosis factor (TNF) inhibitors are important drugs in treating patients with ankylosing spondylitis (AS). However, they are not used as a first-line treatment for AS. There is an insufficient treatment response to the first-line treatment, non-steroidal anti-inflammatory drugs (NSAIDs), in over 40% of patients. If we can predict who will need TNF inhibitors at an earlier phase, adequate treatment can be provided at an appropriate time and potential damages can be avoided. There is no precise predictive model at present. Recently, various machine learning methods show great performances in predictions using clinical data.Objectives:We aim to generate an artificial neural network (ANN) model to predict early TNF inhibitor users in patients with ankylosing spondylitis.Methods:The baseline demographic and laboratory data of patients who visited Samsung Medical Center rheumatology clinic from Dec. 2003 to Sep. 2018 were analyzed. Patients were divided into two groups: early TNF inhibitor users treated by TNF inhibitors within six months of their follow-up (early-TNF users), and the others (non-early-TNF users). Machine learning models were formulated to predict the early-TNF users using the baseline data. Additionally, feature importance analysis was performed to delineate significant baseline characteristics.Results:The numbers of early-TNF and non-early-TNF users were 90 and 509, respectively. The best performing ANN model utilized 3 hidden layers with 50 hidden nodes each; its performance (area under curve (AUC) = 0.75) was superior to logistic regression model, support vector machine, and random forest model (AUC = 0.72, 0.65, and 0.71, respectively) in predicting early-TNF users. Feature importance analysis revealed erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and height as the top significant baseline characteristics for predicting early-TNF users. Among these characteristics, height was revealed by machine learning models but not by conventional statistical techniques.Conclusion:Our model displayed superior performance in predicting early TNF users compared with logistic regression and other machine learning models. Machine learning can be a vital tool in predicting treatment response in various rheumatologic diseases.Disclosure of Interests:None declared


2021 ◽  
Author(s):  
Hyeyoung Koh ◽  
Hannah Beth Blum

This study presents a machine learning-based approach for sensitivity analysis to examine how parameters affect a given structural response while accounting for uncertainty. Reliability-based sensitivity analysis involves repeated evaluations of the performance function incorporating uncertainties to estimate the influence of a model parameter, which can lead to prohibitive computational costs. This challenge is exacerbated for large-scale engineering problems which often carry a large quantity of uncertain parameters. The proposed approach is based on feature selection algorithms that rank feature importance and remove redundant predictors during model development which improve model generality and training performance by focusing only on the significant features. The approach allows performing sensitivity analysis of structural systems by providing feature rankings with reduced computational effort. The proposed approach is demonstrated with two designs of a two-bay, two-story planar steel frame with different failure modes: inelastic instability of a single member and progressive yielding. The feature variables in the data are uncertainties including material yield strength, Young’s modulus, frame sway imperfection, and residual stress. The Monte Carlo sampling method is utilized to generate random realizations of the frames from published distributions of the feature parameters, and the response variable is the frame ultimate strength obtained from finite element analyses. Decision trees are trained to identify important features. Feature rankings are derived by four feature selection techniques including impurity-based, permutation, SHAP, and Spearman's correlation. Predictive performance of the model including the important features are discussed using the evaluation metric for imbalanced datasets, Matthews correlation coefficient. Finally, the results are compared with those from reliability-based sensitivity analysis on the same example frames to show the validity of the feature selection approach. As the proposed machine learning-based approach produces the same results as the reliability-based sensitivity analysis with improved computational efficiency and accuracy, it could be extended to other structural systems.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1784
Author(s):  
Shih-Chieh Chang ◽  
Chan-Lin Chu ◽  
Chih-Kuang Chen ◽  
Hsiang-Ning Chang ◽  
Alice M. K. Wong ◽  
...  

Prediction of post-stroke functional outcomes is crucial for allocating medical resources. In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether a patient could achieve a Barthel Index (BI) score of >60 upon discharge. Eight machine-learning (ML) methods were applied, and their results were integrated by stacking method. The area under the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking, logistic regression, and support vector machine demonstrating superior performance. The feature importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the predictors’ ability to predict outcomes was the most pronounced within a specific value range (e.g., BBS-I < 40 and BI-I < 60). BI at discharge could be predicted by information collected at admission with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could predict outcomes at a certain value range.


In today’s modern world, the world population is affected with some kind of heart diseases. With the vast knowledge and advancement in applications, the analysis and the identification of the heart disease still remain as a challenging issue. Due to the lack of awareness in the availability of patient symptoms, the prediction of heart disease is a questionable task. The World Health Organization has released that 33% of population were died due to the attack of heart diseases. With this background, we have used Heart Disease Prediction dataset extracted from UCI Machine Learning Repository for analyzing and the prediction of heart disease by integrating the ensembling methods. The prediction of heart disease classes are achieved in four ways. Firstly, The important features are extracted for the various ensembling methods like Extra Trees Regressor, Ada boost regressor, Gradient booster regress, Random forest regressor and Ada boost classifier. Secondly, the highly importance features of each of the ensembling methods is filtered from the dataset and it is fitted to logistic regression classifier to analyze the performance. Thirdly, the same extracted important features of each of the ensembling methods are subjected to feature scaling and then fitted with logistic regression to analyze the performance. Fourth, the Performance analysis is done with the performance metric such as Mean Squared error (MSE), Mean Absolute error (MAE), R2 Score, Explained Variance Score (EVS) and Mean Squared Log Error (MSLE). The implementation is done using python language under Spyder platform with Anaconda Navigator. Experimental results shows that before applying feature scaling, the feature importance extracted from the Ada boost classifier is found to be effective with the MSE of 0.04, MAE of 0.07, R2 Score of 92%, EVS of 0.86 and MSLE of 0.16 as compared to other ensembling methods. Experimental results shows that after applying feature scaling, the feature importance extracted from the Ada boost classifier is found to be effective with the MSE of 0.09, MAE of 0.13, R2 Score of 91%, EVS of 0.93 and MSLE of 0.18 as compared to other ensembling methods.


Sign in / Sign up

Export Citation Format

Share Document