scholarly journals Data Fusion of Total Solar Irradiance Composite Time Series Using 41 years of Satellite Measurements

2021 ◽  
Author(s):  
jean-philippe montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Thierry Dudok de Wit ◽  
...  
2021 ◽  
Author(s):  
jean-philippe montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Thierry Dudok de Wit ◽  
...  

2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Rok Sikonja

<p><span>Since the late 70’s, successive satellite missions have been monitoring the sun’s activity, recording total solar irradiance observations. These measurements are important to estimate the Earth’s energy imbalance, </span><span>i.e. the difference of energy absorbed and emitted by our planet. Climate modelers need the solar forcing time series in their models in order to study the influence of the Sun on the Earth’s climate. With this amount of TSI data, solar irradiance reconstruction models  can be better validated which can also improve studies looking at past climate reconstructions (e.g., Maunder minimum). V</span><span>arious algorithms have been proposed in the last decade to merge the various TSI measurements over the 40 years of recording period. We have developed a new statistical algorithm based on data fusion.  The stochastic noise processes of the measurements are modeled via a dual kernel including white and coloured noise.  We show our first results and compare it with previous releases (PMOD,ACRIM, ... ). </span></p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Finsterle ◽  
J. P. Montillet ◽  
W. Schmutz ◽  
R. Šikonja ◽  
L. Kolar ◽  
...  

AbstractVarious space missions have measured the total solar irradiance (TSI) since 1978. Among them the experiments Precision Monitoring of Solar Variability (PREMOS) on the PICARD satellite (2010–2014) and the Variability of Irradiance and Gravity Oscillations (VIRGO) on the mission Solar and Heliospheric Observatory, which started in 1996 and is still operational. Like most TSI experiments, they employ a dual-channel approach with different exposure rates to track and correct the inevitable degradation of their radiometers. Until now, the process of degradation correction has been mostly a manual process based on assumed knowledge of the sensor hardware. Here we present a new data-driven process to assess and correct instrument degradation using a machine-learning and data fusion algorithm, that does not require deep knowledge of the sensor hardware. We apply the algorithm to the TSI records of PREMOS and VIRGO and compare the results to the previously published results. The data fusion part of the algorithm can also be used to combine data from different instruments and missions into a composite time series. Based on the fusion of the degradation-corrected VIRGO/PMO6 and VIRGO/DIARAD time series, we find no significant change (i.e $$-0.17\pm 0.29$$ - 0.17 ± 0.29  W/m$$^2$$ 2 ) between the TSI levels during the two most recent solar minima in 2008/09 and 2019/20. The new algorithm can be applied to any TSI experiment that employs a multi-channel philosophy for degradation tracking. It does not require deep technical knowledge of the individual radiometers.


2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Gael Kermarrec ◽  
Rok Sikonja ◽  
Margit Haberreiter ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 2569 ◽  
Author(s):  
Nicola Scafetta ◽  
Richard Willson ◽  
Jae Lee ◽  
Dong Wu

A continuous record of direct total solar irradiance (TSI) observations began with a series of satellite experiments in 1978. This record requires comparisons of overlapping satellite observations with adequate relative precisions to provide useful long term TSI trend information. Herein we briefly review the active cavity radiometer irradiance monitor physikalisch-meteorologisches observatorium davos (ACRIM-PMOD) TSI composite controversy regarding how the total solar irradiance (TSI) has evolved since 1978 and about whether TSI significantly increased or slightly decreased from 1980 to 2000. The main question is whether TSI increased or decreased during the so-called ACRIM-gap period from 1989 to 1992. There is significant discrepancy between TSI proxy models and observations before and after the gap, which requires a careful revisit of the data analysis and modeling performed during the ACRIM-gap period. In this study, we use three recently proposed TSI proxy models that do not present any TSI increase during the ACRIM-gap, and show that they agree with the TSI data only from 1996 to 2016. However, these same models significantly diverge from the observations from 1981 and 1996. Thus, the scaling errors must be different between the two periods, which suggests errors in these models. By adjusting the TSI proxy models to agree with the data patterns before and after the ACRIM-gap, we found that these models miss a slowly varying TSI component. The adjusted models suggest that the quiet solar luminosity increased from the 1986 to the 1996 TSI minimum by about 0.45 W/m2 reaching a peak near 2000 and decreased by about 0.15 W/m2 from the 1996 to the 2008 TSI cycle minimum. This pattern is found to be compatible with the ACRIM TSI composite and confirms the ACRIM TSI increasing trend from 1980 to 2000, followed by a long-term decreasing trend since.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Gael Kermarrec ◽  
Margit Haberreiter ◽  
Rok Sikonja ◽  
...  

1998 ◽  
Vol 185 ◽  
pp. 89-102 ◽  
Author(s):  
Claus Fröhlich ◽  
Judith Lean

Measurements of the total solar irradiance (TSI) during the last 18 years from spacecraft are reviewed. Corrections are determined for the early measurements made by the HF radiometer within the ERB experiment on NIMBUS7 and the factor to refer ACRIM II to the ACRIM I irradiance scale. With these corrections a composite TSI is constructed for the period from 1978-1997. This time series is compared with a model that combines a magnetic brightness proxy with observed sunspot darkening and explains nearly 90% of the observed short and longterm variance. Possible, but still unverified degradation of the radiometers hampers conclusions about irradiance changes on decadal time scales and longer.


Sign in / Sign up

Export Citation Format

Share Document