Impact of Energy Storage and FACTS Devices in Combined Voltage and Frequency Regulation of Multiarea Multisource Interconnected Power System

2021 ◽  
Author(s):  
Biswanath Dekaraja ◽  
Lalit Chandra Saikia
Author(s):  
Ibrahim Olawale Muritala ◽  
M B Mu’azu ◽  
E A Adedokun

This paper presents a MATLAB simulator of a three area interconnected power system of Thermal-Gas-Hydro. Nonlinearities intrinsic in the interconnected power system of communication delay, Generation Rate Constraint and Generation Dead Band were measured. Bat Inspired Algorithm was exploited to select the favourable parameters of the Model Predictive Controller and the Super Conducting Magnetic Energy Storage. Model Predictive Controller was the subordinate controller employed to minimalize the Area Control Error, Super Conducting Magnetic Energy Storage was the energy buffer to balance the load demand and the power generated. Integral Time Absolute Error was the performance metrics employed to minimize the Area Control Error. Parametric dissimilarity was tested on the inter-connected power system to observe the efficacy of the controller. Step load perturbation of  was concurrently applied to the three-area inter-connected network,  was introduced to the thermal generating unit,  was introduced to the gas and hydro generating unit.  Value of the tie-line was introduced to examine its effect on the frequency deviation. The results performed better when compared with Model Predictive Controller joined with Super Conducting Magnetic Energy Storage against the Model Predictive Controller without Super Conducting Magnetic Energy Storage in relations to settling time, overshoot and undershoot.


2010 ◽  
Vol 59 (3-4) ◽  
pp. 121-140 ◽  
Author(s):  
Łukasz Nogal ◽  
Jan Machowski

WAMS - based control of series FACTS devices installed in tie-lines of interconnected power systemThis paper addresses the state-variable stabilising control of the power system using such series FACTS devices as TCPAR installed in the tie-line connecting control areas in an interconnected power system. This stabilising control is activated in the transient state and is supplementary with respect to the main steady-state control designed for power flow regulation. Stabilising control laws, proposed in this paper, have been derived for a linear multi-machine system model using direct Lyapunov method with the aim to maximise the rate of energy dissipation during power swings and therefore maximisation their damping. The proposed control strategy is executed by a multi-loop controller with frequency deviations in all control areas used as the input signals. Validity of the proposed state-variable control has been confirmed by modal analysis and by computer simulation for a multi-machine test system.


Sign in / Sign up

Export Citation Format

Share Document