A Study on Frequency Regulation Energy Storage System Design in Island Power System

Author(s):  
Jaewan Suh ◽  
Seungmin Jung ◽  
Minhan Yoon
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5365
Author(s):  
Lateef Onaadepo Ibrahim ◽  
Youl-Moon Sung ◽  
Doosoo Hyun ◽  
Minhan Yoon

The aim of this work is to analyze and stabilize the power system when connecting an energy storage system (ESS) to replace the traditional power reserve of a power plant. Thus, it is necessary to validate and simulate the power facility protection system using a relay coordination approach. The input feasibility of the generator for the frequency regulation (FR) of the operational ESS is also validated through detailed analysis studies including power flow, short circuit and relay coordination analysis. The case scenarios for ESS installation are categorized based on its operation mode and location in the power system. These studies are carried out on the power system at the peak load condition specified for both grids. With the electrical transient analyzer program (ETAP), an analysis is performed to study the implementation of the ESS in a large, integrated power system to determine which location best fits the installation of ESS considering the load flow, short circuit and relay coordination results in each case scenario. Cost evaluation was performed for the choice of locations under study.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3898 ◽  
Author(s):  
Minhan Yoon ◽  
Jaehyeong Lee ◽  
Sungyoon Song ◽  
Yeontae Yoo ◽  
Gilsoo Jang ◽  
...  

As the penetration rate of renewable enery resources (RES) in the power system increases, uncertainty and variability in system operation increase. The application of energy storage systems (ESS) in the power system has been increased to compensate for the characteristics of renewable energy resources. Since ESS is a controllable and highly responsive power resource, primary frequency response and inertia response are possible in case of system contingency, so it can be utilized for frequency regulation (FR) purposes. In frequency regulation, reduction of the Rate of Change of Frequency (RoCoF) and increase the frequency nadir by improving the response characteristics are important factors to secure frequency stability. Therefore, it is important to control ESS with proper parameters according to changing system situation. In this paper, we propose a method to calculate and apply a frequency droop, which is basically required according to the power system condition based on swing equation and effective inertia assessment. In addition, a method to estimate RoCoF droop according to the correlation with frequency by estimating the systematic inertia in the current situation is proposed. The case study for verification of the proposed method was performed through dynamic simulation using actual Korean power system data. The results show that the proposed method is more effective than the governor-free of the conventional thermal generator and conventional droop control-based FR-ESS.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Sign in / Sign up

Export Citation Format

Share Document