Distribution system performance enhancement (Egyptian distribution system real case study)

2018 ◽  
Vol 28 (6) ◽  
pp. e2545 ◽  
Author(s):  
Abdallah M. Elsayed ◽  
Mohammed M. Mishref ◽  
Sobhy M. Farrag
2020 ◽  
Vol 14 ◽  
Author(s):  
Keerti Tiwari

: Multiple-input multiple-output (MIMO) systems have been endorsed to enable future wireless communication requirements. The efficient system designing appeals an appropriate channel model, that considers all the dominating effects of wireless environment. Therefore, some complex or less analytically acquiescent composite channel models have been proposed typically for single-input single-output (SISO) systems. These models are explicitly employed for mobile applications, though, we need a specific study of a model for MIMO system which can deal with radar clutters and different indoor/outdoor and mobile communication environments. Subsequently, the performance enhancement of MIMO system is also required in such scenario. The system performance enhancement can be examined by low error rate and high capacity using spatial diversity and spatial multiplexing respectively. Furthermore, for a more feasible and practical system modeling, we require a generalized noise model along with a composite channel model. Thus, all the patents related to MIMO channel models are revised to achieve the near optimal system performance in real world scenario. This review paper offers the methods to improve MIMO system performance in less and severe fading as well as shadowing environment and focused on a composite Weibull-gamma fading model. The development is the collective effects of selecting the appropriate channel models, spatial multiplexing/detection and spatial diversity techniques both at the transmitter and the receivers in the presence of arbitrary noise.


Author(s):  
Beniamino Di Martino ◽  
Dario Branco ◽  
Luigi Colucci Cante ◽  
Salvatore Venticinque ◽  
Reinhard Scholten ◽  
...  

AbstractThis paper proposes a semantic framework for Business Model evaluation and its application to a real case study in the context of smart energy and sustainable mobility. It presents an ontology based representation of an original business model and examples of inferential rules for knowledge extraction and automatic population of the ontology. The real case study belongs to the GreenCharge European Project, that in these last years is proposing some original business models to promote sustainable e-mobility plans. An original OWL Ontology contains all relevant Business Model concepts referring to GreenCharge’s domain, including a semantic description of TestCards, survey results and inferential rules.


2020 ◽  
Vol 6 ◽  
pp. 770-775 ◽  
Author(s):  
J.P. Ribeiro ◽  
C.C. Marques ◽  
I. Portugal ◽  
M.I. Nunes

Sign in / Sign up

Export Citation Format

Share Document