engine mount
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 80)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Jan Růžička

The use of a strain gauge to measure loads is, in some respects, similar to its use in determining stress, but a different approach is required. In load measurement, it is necessary to compile a suitably selected configuration of strain gauges, which can be used to measure often very complex loads of the structure. For designing the engine mount instrumentation for the Flying Test Bed, an optimization tool has been developed. The algorithm and the theory behind the instrumentation design are described in detail. The basic principle is to find the strain gauge configuration that eliminates the measurement error due to the noise in the measured signal as much as possible. The input for optimization is the strain response of the structure to the applied loads analyzed using the FE model. In contrast to the common strategy using purely stochastic methods, this developed tool uses a hybrid approach based on a combination of a heuristic approach with repeated deterministic local optimization. The optimization is focused on the connection of a simple uni-axial strain gauge to a quarter-bridge and a T-rosette to a half-bridge that provides temperature compensation. Furthermore, an approach is proposed that takes into account the possibility of failure of some strain gauges. The instrumentation is thus robust and allows to obtain quality data even in the event of failure of some of the strain gauges.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012017
Author(s):  
P Magryta ◽  
K Pietrykowski

Abstract The article presents strength simulations of a mount for mounting the test engine. Mounted on a stationary test stand, this mount consists of external fixings, fixings to stabilize the engine and tubular elements as a truss. These tubular elements are pipes made of seamless black steel. The material of the truss is S235JR steel. The article examines three different versions of the mount: mount no. 1 - initial mount, mount no. 2 - mount after a modification of pipe arrangement, mount no. 3 - mount after a modification of pipe wall thickness. For each version of the mount and subsequent calculation steps, the same boundary conditions and results legend were assumed. All calculations were made in Catia v5 in the Generative Structure Analysis module. To reflect the conditions prevailing during the engine operation on the test bench, the following conditions as mount load were adopted: gravity from the engine mass as 1000 N; engine thrust as 5000 N, and engine torque as 227 Nm. First, the model was pre-calculated to check the influence of mesh size on the obtained results. 2 mm parabolic tetrahedral elements were used in a computational grid. All subsequent steps of the mount modification showed a positive effect of reducing the maximum stress values or their mitigation as dispersion over a larger area. The changes made it possible to eliminate potentially dangerous areas of stress accumulation points. The material used has a strength several times greater than the stresses occurring in the tested elements. It was found that no further modifications to the mount are required and it is possible to use the created geometry on the test stand.


2021 ◽  
Vol 45 (11) ◽  
pp. 987-991
Author(s):  
Sang Hyuk Shin ◽  
Yong Il Cho ◽  
Ji Hoon Kim ◽  
Hae Young Cho
Keyword(s):  

Author(s):  
Christopher Koch

AbstractThis paper demonstrates the importance of assessing the whirl flutter stability of propeller configurations with a detailed aeroelastic model instead of local pylon models. Especially with the growing use of electric motors for propulsion in air taxis and commuter aircraft whirl flutter becomes an important mode of instability. These configurations often include propeller which are powered by lightweight electric motors and located at remote locations, e.g. the wing tip. This gives rise to an aeroelastic instability called whirl flutter, involving the gyroscopic whirl modes of the engine. The driving parameters for this instability are the dynamics of the mounting structure. Using a generic whirl flutter model of a propeller at the tip of a lifting surface, parameter studies on the flutter stability are carried out. The aeroelastic model consists of a dynamic MSC.Nastran beam model coupled with the unsteady ZAERO ZONA6 aerodynamic model and strip theory for the propeller aerodynamics. The parameter studies focus on the influence of different substructures (ranging from local engine mount stiffness to global aircraft dynamics) on the aeroelastic stability of the propeller. The results show a strong influence of the level of detail of the aeroelastic model on the flutter behaviour. The coupling with the lifting surface is of major importance, as it can stabilise the whirl flutter mode. Including wing unsteady aerodynamics into the analysis can also change the whirl flutter behaviour. This stresses the importance of including whirl flutter in the aeroelastic stability analysis on aircraft level.


Author(s):  
Min Sig Kang

Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine’s survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.


2021 ◽  
pp. 1018-1030
Author(s):  
Jian Yang ◽  
Shuaishuai Sun ◽  
Weihua Li

2021 ◽  
Author(s):  
Sagar Deshmukh ◽  
Sandip Hazra ◽  
Hariprasad Soundarrajan
Keyword(s):  

2021 ◽  
Author(s):  
Virendra S Kuwar ◽  
Vikram V Shinde ◽  
Prashant R Pawar ◽  
Gourishkumar Mohare ◽  
Sandip Hazra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document