A survey and taxonomy on nonorthogonal multiple-access schemes for 5G networks

2017 ◽  
Vol 29 (1) ◽  
pp. e3202 ◽  
Author(s):  
Mehak Basharat ◽  
Waleed Ejaz ◽  
Muhammad Naeem ◽  
Asad Masood Khattak ◽  
Alagan Anpalagan
Author(s):  
Aasheesh Shukla ◽  
◽  
Manish Kumar ◽  
Vinay Kumar Deolia ◽  
◽  
...  

Future communication networks may encounter various issues in order to facilitate heavy heterogeneous data traffic and large number of users, therefore more advanced multiple access (MA) schemes are being developed to meet the changing requirements. The research space on making more robust MA scheme is continuously increasing, so it becomes significant to analyze the various schemes to determine the appropriate MA scheme for 5G networks. Therefore, in this paper the comprehensive overview of the most popular and recent MA schemes is presented for 5G networks. This paper mainly classifies the MA techniques in orthogonal MA (OMA) and various types of non-OMA (NOMA) techniques. Specifically, we introduce RSMA (Rate splitting multiple access) and IDMA (interleave division multiple access). Further the close attention is paid to NOMA family, including code-domain NOMA (e.g., SCMA (sparse code multiple access)), power-domain NOMA. Above all, from this exploration, the opportunities and challenges could be notified in MA schemes and further the optimum MA technique can be point out among discussed MA schemes for 5G and beyond communication networks.


Author(s):  
Mrs. Rinkoo Bhatia

Fifth generation (5G) wireless networks face various challenges in order to support largescale heterogeneous traffic and users, therefore new modulation and multiple access (MA) schemes are being developed to meet the changing demands. As this research space is ever increasing, it becomes more important to analyze the various approaches, therefore, in this article we present a comprehensive overview of the most promising Multiple Access schemes for 5G networks. Our article focuses on various types of non-orthogonal multiple access (NOMA) techniques. Specifically, we first introduce different types of modulation schemes, potential for OMA. We then pay close attention to various types of NOMA candidates, including power-domain NOMA, code-domain NOMA, and NOMA multiplexing in multiple domains. From this exploration, we can identify the opportunities and challenges that will have the most significant impacts on modulation and MA designs for 5G networks.


Author(s):  
Aiman Kassir ◽  
◽  
Rudzidatul Akmam Dziyauddin ◽  
Hazilah Mad Kaidi ◽  
Mohd Azri Mohd Izhar ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 116
Author(s):  
Wissal Ben Ameur ◽  
Philippe Mary ◽  
Jean-François Hélard ◽  
Marion Dumay ◽  
Jean Schwoerer

Non-orthogonal multiple access schemes with grant free access have been recently highlighted as a prominent solution to meet the stringent requirements of massive machine-type communications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding complexity. However, this family of receivers requires sufficiently diversified received user powers in order to ensure the best performance and avoid the error propagation phenomenon. The power allocation has been considered as a complicated issue especially for a decentralized decision with a minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a minimal overhead based on a tight approximation of the bit error probability (BEP) while considering the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each user reward only informs about whether its own packet was successfully transmitted or not; (ii) in Scenario 2, each user reward may carry information about the other interfering user packets. The performances of the proposed algorithm and the MAB techniques are compared in terms of the successful transmission rate. The simulation results prove that the MAB algorithms show a better performance in the second scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 21204-21216 ◽  
Author(s):  
Konpal Shaukat Ali ◽  
Hesham Elsawy ◽  
Anas Chaaban ◽  
Mohamed-Slim Alouini

Sign in / Sign up

Export Citation Format

Share Document