scholarly journals On the incorporation of a micromechanical material model into the inherent strain method—Application to the modeling of selective laser melting

2021 ◽  
2018 ◽  
Vol 45 (7) ◽  
pp. 0702004
Author(s):  
倪辰旖 Ni Chenyi ◽  
张长东 Zhang Changdong ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe

2021 ◽  
Vol 871 ◽  
pp. 65-72
Author(s):  
Cheng Hong Duan ◽  
Xian Kun Cao ◽  
Ming Huang Zhao ◽  
Xiang Peng Luo

In the process of metal parts fabricated by Laser Melting Deposition (LMD), a high temperature gradient will generate due to the instantaneous high laser energy input, which will cause residual stress in the formed part of metal parts, the residual stress will result in defects like warping deformation or even cracking. In this paper, a finite element method based on inherent strain method is proposed to predict the deformation of metal parts fabricated by LMD. Firstly, combing with the birth and death element technology, a local model is established to simulate the layer-by-layer deposition in the LMD forming process, and the values of inherent strain is obtained. Secondly, the obtained inherent strain values is applied to large-sized part layer by layer, and the final deformation of large-sized part is calculated. Based on the proposed method, the efficiency of deformation prediction of large-sized metal parts fabricated by LMD could be effectively improved.


2020 ◽  
Vol 66 (6) ◽  
pp. 1321-1342
Author(s):  
Isabelle Noll ◽  
Thorsten Bartel ◽  
Andreas Menzel

AbstractSelective laser melting (SLM) has gained large interest due to advanced manufacturing possibilities. However, the growing potential also necessitates reliable predictions of structures in particular regarding their long-term behaviour. The constitutive and structural response is thereby challenging to reproduce, due to the complex material behaviour. This motivates the aims of this contribution: To establish a material model that accounts for the behaviour of the different phases occurring during SLM but that still allows the use of (basic) process simulations. In particular, the present modelling framework explicitly takes into account the mass fractions of the different phases, their mass densities, and specific inelastic strain contributions. The thermomechanically fully coupled framework is implemented into the software Abaqus. The numerical examples emphasise the capabilities of the framework to predict, e.g., the residual stresses occurring in the final part. Furthermore, a postprocessing of averaged inelastic strains is presented yielding a micromechanics-based motivation for inherent strains.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Changcheng Hu ◽  
Yao Zhao ◽  
Guoyuan Tang

Inherent strain method has been widely used as a forecasting and computing method for welding deformation of large complicated structures and further applied to the research of line heating forming. Mechanical forming is a common ship-hull plate forming method, for which deformation prediction still depends mainly on elastoplastic finite element method. This paper researched the application of inherent strain method to plate line rolling forming, a common mechanical forming method, and then compared the results of inherent strain method and elastoplastic finite element method, proving the applicability of inherent strain method, providing a method for fast, accurate forecasting of distortion in plate line rolling and formation of automation equipment.


Sign in / Sign up

Export Citation Format

Share Document