Determination of the membrane potential of cultured mammalian schwann cells and its sensitivity to potassium using a thiocarbocyanine fluorescent dye

Glia ◽  
1991 ◽  
Vol 4 (6) ◽  
pp. 611-616 ◽  
Author(s):  
P. T. Hargittai ◽  
S. J. Youmans ◽  
E. M. Lieberman
2013 ◽  
Vol 83A (7) ◽  
pp. 612-626 ◽  
Author(s):  
Thomas Klapperstück ◽  
Dagobert Glanz ◽  
Stefan Hanitsch ◽  
Manuela Klapperstück ◽  
Fritz Markwardt ◽  
...  

1997 ◽  
Vol 246 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Bernd Lorenz ◽  
Jessica Münkner ◽  
Marco P. Oliveira ◽  
José M. Leitão ◽  
Werner E.G. Müller ◽  
...  

2000 ◽  
Vol 203 (14) ◽  
pp. 2201-2208 ◽  
Author(s):  
M. Furimsky ◽  
T.W. Moon ◽  
S.F. Perry

The mechanisms of intracellular pH (pHi) regulation were examined in hepatocytes of the rainbow trout Oncorhynchus mykiss. pHi was monitored using the pH-sensitive fluorescent dye BCECF, and the effects of various media and pharmacological agents were examined for their influence on baseline pHi and recovery rates from acid and base loading. Rates of Na(+) uptake were measured using (22)Na, and changes in membrane potential were examined using the potentiometric fluorescent dye Oxonol VI. The rate of proton extrusion following acid loading was diminished by the blockade of either Na(+)/H(+) exchange (using amiloride) or anion transport (using DIDS). The removal of external HCO(3)(−) and the abolition of outward K(+) diffusion by the channel blocker Ba(2+) also decreased the rate of proton extrusion following acid load. Depolarization of the cell membrane with 50 mmol l(−)(1) K(+), however, did not affect pHi. The rate of recovery from base loading was significantly diminished by the blockade of anion transport, removal of external HCO(3)(−) and, to a lesser extent, by blocking Na(+)/H(+) exchange. The blockade of K(+) conductance had no effect. The decrease in Na(+) uptake rate observed in the presence of the anion transport blocker DIDS and the DIDS-sensitive hyperpolarization of membrane potential during recovery from acid loading suggest that a Na(+)-dependent electrogenic transport system is involved in the restoration of pHi after intracellular acidification. The effects on baseline pHi indicate that the different membrane exchangers are tonically active in the maintenance of steady-state pHi. This study confirms the roles of a Na(+)/H(+) exchanger and a Cl(−)/HCO(3)(−) exchanger in the regulation of trout hepatocyte pHi and provides new evidence that a Na(+)/HCO(3)(−) cotransporter contributes to pHi regulation.


1984 ◽  
Vol 70 (1) ◽  
pp. 73-81
Author(s):  
K. Tanabe ◽  
K. Murakami

The membrane potential of Toxoplasma gondii, an obligatory intracellular protozoan parasite, was monitored with the cationic permeant fluorescent dye rhodamine 123 (R123). Fluorescence microscopy revealed R123 to be partitioned predominantly in a restricted part of the parasite, which consisted of twisted or branched tubules, or of granular bodies. These structures were frequently connected to each other. The dye retention by these structures was markedly reduced by treating R123-labelled parasites with the proton ionophore, carbonylcyanide m-chlorophenylhydrazone, the potassium ionophore, valinomycin and the inhibitor of electron transport, antimycin A. Thus, these structures are regarded as the parasite mitochondria. Another cationic fluorescent dye, rhodamine 6G, stained the parasite mitochondria, whereas a negatively charged fluorescent dye, fluorescein, and the neutral compounds, rhodamine 110 and rhodamine B, did not. This fact indicates that R123 monitored the parasite mitochondrial membrane potential. T. gondii-infected 3T3 cells were also stained with R123. In contrast to the mitochondria of extracellular parasites, those of intracellular parasites failed to take up the dye. The absence of fluorescence in intracellular parasites persisted until the infected host cells ruptured and liberated daughter parasites 1 day after infection. Parasites, liberated from the host cells, either spontaneously or artificially by passing the infected cells through a 27G needle, regained the ability to take up the dye. After direct microinjection of R123 into the vacuole in which the parasite grows and multiples, the dye appeared in the host-cell mitochondria but not in the parasite's mitochondria. Thus, we conclude that the mitochondrial membrane potential of T. gondii was reduced after invasion of host cells by the parasite.


1976 ◽  
Vol 67 (3) ◽  
pp. 369-380 ◽  
Author(s):  
J Villegas ◽  
C Sevcik ◽  
F V Barnola ◽  
R Villegas

The actions of grayanotoxin I, veratrine, and tetrodotoxin on the membrane potential of the Schwann cell were studied in the giant nerve fiber of the squid Sepioteuthis sepioidea. Schwann cells of intact nerve fibers and Schwann cells attached to axons cut lengthwise over several millimeters were utilized. The axon membrane potential in the intact nerve fibers was also monitored. The effects of grayanotoxin I and veratrine on the membrane potential of the Schwann cell were found to be similar to those they produce on the resting membrane potential of the giant axon. Thus, grayanotoxin I (1-30 muM) and veratrine (5-50 mug-jl-1), externally applied to the intact nerve fiber or to axon-free nerve fiber sheaths, produce a Schwann cell depolarization which can be reversed by decreasing the external sodium concentration or by external application of tetrodotoxin. The magnitude of these membrane potential changes is related to the concentrations of the drugs in the external medium. These results indicate the existence of sodium pathways in the electrically unexcitable Schwann cell membrane of S. sepioidea, which can be opened up by grayanotoxin I and veratrine, and afterwards are blocked by tetrodotoxin. The sodium pathways of the Schwann cell membrane appear to be different from those of the axolemma which show a voltage-dependent conductance.


Sign in / Sign up

Export Citation Format

Share Document