scholarly journals Single neuron activity and theta modulation in the posterior parietal cortex in a visuospatial attention task

Hippocampus ◽  
2017 ◽  
Vol 27 (3) ◽  
pp. 263-273 ◽  
Author(s):  
Fang-Chi Yang ◽  
Tara K. Jacobson ◽  
Rebecca D. Burwell
2019 ◽  
Vol 25 (09) ◽  
pp. 972-984
Author(s):  
Tian Gan ◽  
Stevan Nikolin ◽  
Colleen K. Loo ◽  
Donel M. Martin

AbstractObjectives:Noninvasive brain stimulation methods, including high-definition transcranial direct current stimulation (HD-tDCS) and theta burst stimulation (TBS) have emerged as novel tools to modulate and explore brain function. However, the relative efficacy of these newer stimulation approaches for modulating cognitive functioning remains unclear. This study investigated the cognitive effects of HD-tDCS, intermittent TBS (iTBS) and prolonged continuous TBS (ProcTBS) and explored the potential of these approaches for modulating hypothesized functions of the left posterior parietal cortex (PPC).Methods:Twenty-two healthy volunteers attended four experimental sessions in a cross-over experimental design. In each session, participants either received HD-tDCS, iTBS, ProcTBS or sham, and completed cognitive tasks, including a divided attention task, a working memory maintenance task and an attention task (emotional Stroop test).Results:The results showed that compared to sham, HD-tDCS, iTBS and ProcTBS caused significantly faster response times on the emotional Stroop task. The effect size (Cohen’sd) wasd= .32 for iTBS (p< .001), .21 for ProcTBS (p= .01) and .15 for HD-tDCS (p= .044). However, for the performance on the divided attention and working memory maintenance tasks, no significant effect of stimulation was found.Conclusions:The results suggest that repetitive transcranial magnetic stimulation techniques, including TBS, may have greater efficacy for modulating cognition compared with HD-tDCS, and extend existing knowledge about specific functions of the left PPC.


Neuron ◽  
2018 ◽  
Vol 97 (1) ◽  
pp. 209-220.e3 ◽  
Author(s):  
Ueli Rutishauser ◽  
Tyson Aflalo ◽  
Emily R. Rosario ◽  
Nader Pouratian ◽  
Richard A. Andersen

2021 ◽  
pp. 1-11
Author(s):  
Nan Liu ◽  
Pedro Pinheiro-Chagas ◽  
Clara Sava-Segal ◽  
Sabine Kastner ◽  
Qi Chen ◽  
...  

Abstract Engagement of posterior parietal cortex (PPC) in visuospatial attention and arithmetic processing has been extensively documented using neuroimaging methods. Numerous studies have suggested a close connection between visuospatial attention and arithmetic processing. However, given that the extant evidence in humans stem from neuroimaging methods that have relied on group analyses without much knowledge about the profile of neurophysiological engagement within localized neuronal populations at the individual brain level. Hence, it has remained unclear if the overlap of two functions in the PPC is the product of averaging, or they truly stem from a common profile of activity within the same neuronal populations in the human PPC. In the current study, we leveraged the anatomical precision and high signal-to-noise ratio of intracranial electrocorticography and probed the engagement of discrete PPC neuronal populations in seven neurosurgical patients (n = 179 total PPC sites covered; 26 sites in average per individual participant). We aimed to study the extent of parietal activations within each individual brain during visuospatial attention versus arithmetic tasks and the profile of electrophysiological responses within a given recording site during these tasks. Our findings indicated that about 40% of PPC sites did not respond to either visuospatial attention or arithmetic stimuli—or episodic memory conditions that were used as an adjunct control condition. Of those that were activated during either visuospatial attention or arithmetic conditions, a large majority showed overlapping responses during both visuospatial attention and arithmetic conditions. Most interestingly, responses during arithmetic processing were greatest in sites along the intraparietal sulcus region showing preference to contralateral, instead of ipsilateral, visual probes in the visuospatial attention task. Our results provide novel data about the relationship between numerical and spatial orientation at the neuronal population level and shed light on the complex functional organization of the PPC that could not be attained with noninvasive methods.


2005 ◽  
Vol 382 (3) ◽  
pp. 280-285 ◽  
Author(s):  
Yun-Hee Kim ◽  
Soo-Jung Min ◽  
Myoung-Hwan Ko ◽  
Ji-Won Park ◽  
Sung Ho Jang ◽  
...  

2020 ◽  
Author(s):  
Jochem van Kempen ◽  
Christian Brandt ◽  
Claudia Distler ◽  
Mark A. Bellgrove ◽  
Alexander Thiele

AbstractSelective attention facilitates the prioritization of task-relevant sensory inputs over those which are irrelevant. Although cognitive neuroscience has made great strides in understanding the neural substrates of attention, our understanding of its neuropharmacology is incomplete. Cholinergic and glutamatergic contributions have been demonstrated, but emerging evidence also suggests an important influence of dopamine (DA). DA has historically been investigated in the context of frontal/prefrontal function arguing that dopaminergic receptor density in the posterior/parietal cortex is sparse. However, this notion was derived from rodent data, whereas in primates DA innervation in parietal cortex matches that of many prefrontal areas. We recorded single- and multi-unit activity whilst iontophoretically administering dopaminergic agonists and antagonists to posterior parietal cortex of rhesus macaques engaged in a spatial attention task. Out of 88 neurons, 50 showed modulation of activity induced by drug administration. Dopamine inhibited firing rates across the population according to an inverted-U shaped dose-response curve. D1 receptor antagonists diminished firing rates in broad-spiking units according to a monotonically increasing function. Additionally, dopamine modulated attentional signals in broad, but not narrow-spiking cells. Finally, both drugs modulated the pupil light reflex. These data show that dopamine plays an important role in shaping neuronal responses and modulates attentional processing in macaque parietal cortex.Significance statementDopamine is critically involved in high-level cognitive functions, and dopaminergic dysfunctions pertain to ageing and neurological and psychiatric disorders. Most previous studies focused on dopaminergic effects on prefrontal activity or its role in basal ganglia circuitry. The effects of dopamine in other brain areas such as parietal cortex, despite its well-established role in cognition and cognitive dysfunction, have largely been overlooked. This study is the first to show dopaminergic modulation of parietal activity in general, and specific to spatial attention in the non-human primate, revealing cell-type specific effects of dopamine on attentional modulation.


2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document