Finding a salient stimulus: Contributions of monkey prefrontal and posterior parietal cortex in a bottom-up visual attention task

2010 ◽  
Vol 10 (7) ◽  
pp. 90-90
Author(s):  
F. Katsuki ◽  
C. Constantinidis
2019 ◽  
Vol 25 (09) ◽  
pp. 972-984
Author(s):  
Tian Gan ◽  
Stevan Nikolin ◽  
Colleen K. Loo ◽  
Donel M. Martin

AbstractObjectives:Noninvasive brain stimulation methods, including high-definition transcranial direct current stimulation (HD-tDCS) and theta burst stimulation (TBS) have emerged as novel tools to modulate and explore brain function. However, the relative efficacy of these newer stimulation approaches for modulating cognitive functioning remains unclear. This study investigated the cognitive effects of HD-tDCS, intermittent TBS (iTBS) and prolonged continuous TBS (ProcTBS) and explored the potential of these approaches for modulating hypothesized functions of the left posterior parietal cortex (PPC).Methods:Twenty-two healthy volunteers attended four experimental sessions in a cross-over experimental design. In each session, participants either received HD-tDCS, iTBS, ProcTBS or sham, and completed cognitive tasks, including a divided attention task, a working memory maintenance task and an attention task (emotional Stroop test).Results:The results showed that compared to sham, HD-tDCS, iTBS and ProcTBS caused significantly faster response times on the emotional Stroop task. The effect size (Cohen’sd) wasd= .32 for iTBS (p< .001), .21 for ProcTBS (p= .01) and .15 for HD-tDCS (p= .044). However, for the performance on the divided attention and working memory maintenance tasks, no significant effect of stimulation was found.Conclusions:The results suggest that repetitive transcranial magnetic stimulation techniques, including TBS, may have greater efficacy for modulating cognition compared with HD-tDCS, and extend existing knowledge about specific functions of the left PPC.


2007 ◽  
Vol 19 (3) ◽  
pp. 513-524 ◽  
Author(s):  
Elisabeth Rounis ◽  
Kielan Yarrow ◽  
John C. Rothwell

Many studies have shown that visuospatial orienting attention depends on a network of frontal and parietal areas in the right hemisphere. Rushworth et al. [Rushworth, M. F., Krams, M., & Passingham, R. E. The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13, 698–710, 2001] have recently provided evidence for a left-lateralized network of parietal areas involved in motor attention. Using two variants of a cued reaction time (RT) task, we set out to investigate whether high-frequency repetitive transcranial magnetic stimulation (rTMS; 5 Hz) delivered “off-line” in a virtual lesion paradigm over the right or left dorsolateral prefrontal cortex (DLPFC) or the posterior parietal cortex (PPC) would affect performance in a motor versus a visual attention task. Although rTMS over the DLPFC on either side did not affect RT performance on a spatial orienting task, it did lead to an increase in the RTs of invalidly cued trials in a motor attention task when delivered to the left DLPFC. The opposite effect was found when rTMS was delivered to the PPC: In this case, conditioning the right PPC led to increased RTs in invalidly cued trials located in the left hemispace, in the spatial orienting task. rTMS over the PPC on either side did not affect performance in the motor attention task. This double dissociation was evident in the first 10 min after rTMS conditioning. These results enhance our understanding of the networks associated with attention. They provide evidence of a role for the left DLPFC in the mechanisms of motor preparation, and confirm Mesulam's original proposal for a right PPC dominance in spatial attention [Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309–325, 1981].


Sign in / Sign up

Export Citation Format

Share Document