Novel 1-D Chains Constructed of Rings Which Include Six Metal Atoms [M2Au4] (M = Ni, Zn) with Aurophilic Interactions: Structure, Magnetic, and Spectral Studies

2005 ◽  
Vol 88 (11) ◽  
pp. 3000-3010 ◽  
Author(s):  
Shu-Ping Wang ◽  
You Song ◽  
Dong-Zhao Gao ◽  
Li-Cun Li ◽  
Qing-Mei Wang ◽  
...  
2021 ◽  
Vol 2103 (1) ◽  
pp. 012146
Author(s):  
S V Nekipelov ◽  
N A Zhuk ◽  
O V Petrova ◽  
D V Sivkov ◽  
K A Bakina ◽  
...  

Abstract Thermal stable solid solutions of titanates, niobates, and tantalates of bismuth with a pyrochlore structure doped with 3d-metal atoms were studied using XPS and NEXAFS spectroscopy. Based on spectral studies, it was shown that the manganese, cobalt, nickel and copper atoms in these solid solutions have mainly charge state +2 and iron atoms – charge state +3.


Author(s):  
S. Ritchie ◽  
J. C. Bennett ◽  
A. Prodan ◽  
F.W. Boswell ◽  
J.M. Corbett

A continuous sequence of compounds having composition NbxTa1-xTe4; 0 ≤ x ≤ 1 have been studied by electron diffraction and microscopy. Previous studies have shown that the end members of the series, TaTε4 and NbTε4 possess a quasi-one-dimensional character and exhibit charge density wave (CDW) distortions. In these compounds, the subcell structure is tetragonal with axes (a × a × c) and consists of the metal atoms (Nb or Ta) centered within an extended antiprismatic cage of Te atoms. At room temperature, TaTε4 has a commensurate modulation structure with a 2a × 2a × 3c unit cell. In NbTε4, an incommensurate modulation with × ∼ 16c axes is observed. Preliminary studies of the mixed compounds NbxTα1-xTε4 showed a discontinuous jump of the modulation wave vector commensurate to incommensurate when the Nb dopant concentration x, exceeded x ≃ 0.3, In this paper, the nature of the compositional dependence of is studied in greater detail and evidence is presented for a stepwise variation of . This constitutes the first direct evidence for a Devil's staircase in CDW materials.


Author(s):  
Klaus-Ruediger Peters

Topographic ultra high resolution can now routinely be established on bulk samples in cold field emission scanning electron microscopy with a second generation of microscopes (FSEM) designed to provide 0.5 nm probe diameters. If such small probes are used for high magnification imaging, topographic contrast is so high that remarkably fine details can be imaged on 2DMSO/osmium-impregnated specimens at ribosome surfaces even without a metal coating. On TCH/osmium-impregnated specimens topographic resolution can be increased further if the SE-I imaging mode is applied. This requires that beam diameter and metal coating thickness be made smaller than the SE range of ~1 nm and background signal contributions be reduced. Subnanometer small probes can be obtained (only) at high accelerating voltages. Subnanometer thin continuous metal films can be produced under the following conditions: self-shadowing effect between metal atoms must be reduced through appropriate deposition techniques and surface mobility of metal atoms must be diminished through high energy sputtering and/or specimen cooling.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


2020 ◽  
Vol 17 (6) ◽  
pp. 488-495
Author(s):  
Hussein Ali Al-Bahrani ◽  
Mohanad Mousa Kareem ◽  
Abdul Amir Kadhum ◽  
Nour A. Alrazzak

Background: The phthalocyanines a series of compounds involves four iso-indole units linked by aza nitrogen atoms bonded with metal atoms that are normally located in the center a phthalocyanines ring. Some of the central metal-phthalocyanines can be excited by ultraviolet light and emit a fluorescence in far-red region. Objective: To synthesize a derivative of phthalocyanines namely 4,4',4' '-tri-(dodecenyl succinic anhydride)- 4' ' '-(5-amino salicylic acid) zinc phthalocyanine with a zinc central metal. Materials and Methods: The reaction of 4- nitro Phthalonitrile and 4- amino Phthalonitrile with ZnCl2 in the presence of dimethyl amino ethanol afforded 4,4',4' '-triamino-4' ' '-nitro zinc phthalocyanine. This product reacted with 5-amino salicylic acid to yield tetra-(5-amino salicylic acid) zinc phthalocyanine. A dodecenyl succinic anhydride was added on the amine group of benzoic rings to afford 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine(I), the target compound. Results and Discussion: Compound I is successfully synthesized with a yield of 72% from tetra-(5-amino salicylic acid) zinc phthalocyanine with dodecenyl succinic anhydride. Conclusion: The newly synthesized molecule of 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine (I), tetra-(5-amino salicylic acid) zinc phthalocyanine(E) and 4,4',4' '- triamino-4' ' '-nitro zinc phthalocyanine (S). The reaction of 4- nitro Phthalonitrile and 4- amino and the structure of compound I is confirmed and its formation was proven.


Sign in / Sign up

Export Citation Format

Share Document