Research on melting and solidification processes for enhanced double tubes with constant wall temperature/wall heat flux

2017 ◽  
Vol 47 (3) ◽  
pp. 583-599 ◽  
Author(s):  
Wei-Biao Ye ◽  
Hong-Ju Guo ◽  
Si-Min Huang ◽  
Yu-Xiang Hong
2019 ◽  
Vol 141 (3) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Dennis A. Siginer

Forced convection heat transfer in fully developed laminar flow in transversely corrugated tubes is investigated for nonuniform but constant wall heat flux as well as for constant wall temperature. Epitrochoid conformal mapping is used to map the flow domain onto the unit circle in the computational domain. The governing equations are solved in the computational domain analytically. An exact analytical solution for the temperature field is derived together with closed form expressions for bulk temperature and Nusselt number for the case of the constant heat flux at the wall. A variable coefficient Helmholtz eigenvalue problem governs the case of the constant wall temperature. A novel semi-analytical solution based on the spectral Galerkin method is introduced to solve the Helmholtz equation. The solution in both constant wall heat flux and constant wall temperature case is shown to collapse onto the well-known results for the circular straight tube for zero waviness.


1966 ◽  
Vol 88 (2) ◽  
pp. 214-222 ◽  
Author(s):  
W. T. Lawrence ◽  
J. C. Chato

A numerical method was developed for the calculation of entrance flows in vertical tubes for the cases of upflow or downflow and constant wall heat flux or constant wall temperature. The solutions were in excellent agreement with experimental data obtained with water flowing upward in a vertical heated tube. The results show that both the density and the viscosity have to be treated as nonlinear functions of temperature. Consequently, for the constant heat flux condition, the velocity and temperature profiles constantly change and never reach “fully developed” states. The transition to turbulent flow was also studied. The experimental measurements demonstrated that the transition process depends on the developing velocity profiles. For the constant heat flux case, transition will always occur at some axial position. For a given entrance condition, the distance to transition is fixed by the fluid flow rate and the wall heat flux. For the experimental results, a tentative transition criterion was obtained, which depends only on the velocity profile shape, fluid viscosity, and the entrance Reynolds number.


Author(s):  
Tânia S. Cação Ferreira ◽  
Tony Arts

An investigation of thermal effects on bypass transition was conducted on the highly-loaded turbine guide vane LS89 in the short-duration isentropic Compression Tube (CT-2) facility at the von Karman Institute for Fluid Dynamics (VKI). Measurements from high response surface-mounted thin films coupled with analog circuits provided the time-resolved wall heat flux history whereas pneumatic probes, differential pressure transducers and thermocouples allowed the accurate definition of the inlet and outlet flow conditions. The gas-to-wall temperature ratio, ranging from 1.11 to 1.55, was varied by changing the inlet total temperature. The isentropic exit Mach number ranged from 0.90 to 1.00 and the global freestream turbulence intensity value was set at 0.8, 3.9 and 5.3%. The isentropic exit Reynolds number was kept at 106. The onset of transition was tracked through the wall heat flux signal fluctuations. Within the present operating conditions, no significant effect of the gas/wall temperature ratio was put in evidence. At the present (design) transonic exit conditions, the local free-stream pressure gradient appears to remain the main driver of the onset of transition. A wider range of operating conditions must be considered to draw final conclusions.


Author(s):  
X. Y. Xu ◽  
T. Ma ◽  
M. Zeng ◽  
Q. W. Wang

Due to the dramatic changes in physical properties, the flow and heat transfer in supercritical fluid are significantly affected by buoyancy effects, especially when the ratio of inlet mass flux and wall heat flux is relatively small. In this study, the heat transfer of supercritical water in uniformly heated vertical tube is numerically investigated with different buoyancy models which are based on different calculation methods of the turbulent heat flux. The applicabilities of these buoyancy models are analyzed both in heat transfer enhancement and deterioration conditions. The simulation results show that these buoyancy models make few differences and give good wall temperature prediction in heat transfer enhancement condition when the ratio of inlet mass flux and wall heat flux is very small. With the increase of wall heat flux, the accuracy of wall temperature prediction reduces, and the differences between these buoyancy models become larger. No buoyancy model can currently make accurate wall temperature prediction in deterioration condition in this study.


Sign in / Sign up

Export Citation Format

Share Document