Analytical estimation of energy dissipations: Viscous, Joulian, and Darcy of viscoelastic fluid flow phenomena over a deformable surface

Heat Transfer ◽  
2021 ◽  
Author(s):  
D. Bhukta ◽  
G. C. Dash ◽  
S. R. Mishra ◽  
S. Jena

2011 ◽  
Vol 12 (1-4) ◽  
pp. 485-498 ◽  
Author(s):  
F. J. Galindo-Rosales ◽  
L. Campo-Deaño ◽  
F. T. Pinho ◽  
E. van Bokhorst ◽  
P. J. Hamersma ◽  
...  


Author(s):  
F.-C. Li ◽  
H. Kinoshita ◽  
M. Oishi ◽  
T. Fujii ◽  
M. Oshima

Solutions of flexible high-molecular-weight polymers or some kinds of surfactant can be viscoelastic fluids. The elastic stress is induced in such viscoelastic fluids and grow nonlinearly with the flow rate and results in many special flow phenomena, including purely elastic instability in the viscoelastic fluid flow. The elastic flow instability can even result in a special kind of turbulent motion, the so-called elastic turbulence, which is a newly discovered flow phenomenon and arises at arbitrary small Reynolds number. In this study, we experimentally investigated the peculiar flow phenomena of viscoelastic fluids in several different microchannels with curvilinear geometry by visualization technique. The viscoelastic working fluids were aqueous solutions of surfactant, CTAC/NaSal (cetyltrimethyl ammonium chloride/Sodium Salysilate). CTAC solutions with weight concentration of 200 ppm (part per million) and 1000 ppm, respectively, at room temperature were tested. For comparison, water flow in the same microchannels was also visualized. The Reynolds numbers for all the microchannel flows were quite small (for solution flows, the Reynolds numbers were smaller than 1) and the flow should be definitely laminar for Newtonian fluid. It was found that the regular laminar flow patterns for low-Reynolds number Newtonian fluid flow in different microchannels were strongly deformed in solution flows: either asymmetrical flow structures or time-dependent vortical flow motions appeared. These phenomena were considered to be induced by the viscoelasticity of the CTAC solutions.



Author(s):  
Chao Yuan ◽  
Hong-Na Zhang ◽  
Yu-Ke Li ◽  
Xiao-Bin Li ◽  
Jian Wu ◽  
...  

Viscoelastic fluid naturally has both viscous and elastic properties. Therefore, there are two sources of nonlinear effects, namely inertial and elastic nonlinearities. The existence of elastic nonlinearity brings about various interesting flow phenomena in viscoelastic fluid flow, especially in microfluidics where the inertial nonlinearity can be negligible while the elastic nonlinearity can dominate the flow. Specifically, purely elasticity-induced instability and turbulence can occur in microchannels when the elastic nonlinearity is strong enough. Recently, those intriguing properties of viscoelastic fluid flow have motivated lots of researches on taking viscoelastic fluid as working fluid in different types of microfluidic devices, such as micro-mixers, micro heat exchangers, logic microfluidic circuits and particle manipulation. This paper aims to provide a state-of-the-art review of the nonlinear effect of viscoelastic fluids and its applications in the aforementioned microfluidic fields, which may provide a useful guidance for the researchers who are interested in this area.







Sign in / Sign up

Export Citation Format

Share Document