Visualizations of Viscoelastic Fluid Flow in Microchannels

Author(s):  
F.-C. Li ◽  
H. Kinoshita ◽  
M. Oishi ◽  
T. Fujii ◽  
M. Oshima

Solutions of flexible high-molecular-weight polymers or some kinds of surfactant can be viscoelastic fluids. The elastic stress is induced in such viscoelastic fluids and grow nonlinearly with the flow rate and results in many special flow phenomena, including purely elastic instability in the viscoelastic fluid flow. The elastic flow instability can even result in a special kind of turbulent motion, the so-called elastic turbulence, which is a newly discovered flow phenomenon and arises at arbitrary small Reynolds number. In this study, we experimentally investigated the peculiar flow phenomena of viscoelastic fluids in several different microchannels with curvilinear geometry by visualization technique. The viscoelastic working fluids were aqueous solutions of surfactant, CTAC/NaSal (cetyltrimethyl ammonium chloride/Sodium Salysilate). CTAC solutions with weight concentration of 200 ppm (part per million) and 1000 ppm, respectively, at room temperature were tested. For comparison, water flow in the same microchannels was also visualized. The Reynolds numbers for all the microchannel flows were quite small (for solution flows, the Reynolds numbers were smaller than 1) and the flow should be definitely laminar for Newtonian fluid. It was found that the regular laminar flow patterns for low-Reynolds number Newtonian fluid flow in different microchannels were strongly deformed in solution flows: either asymmetrical flow structures or time-dependent vortical flow motions appeared. These phenomena were considered to be induced by the viscoelasticity of the CTAC solutions.

2008 ◽  
Vol 10 (3) ◽  
pp. 35-37 ◽  
Author(s):  
Sylwia Peryt-Stawiarska ◽  
Zdzisław Jaworski

Fluctuations of the non-Newtonian fluid flow in a Kenics static mixer: An experimental study The measurements for a Kenics static mixer were carried out using Laser Doppler Anemometer (LDA). The test fluid was non-Newtonian solution of CMC, Blanose type 9H4. The velocity data inside the 5th Kenics insert were collected for the axial components at five levels of Reynolds number, Re = 20 ÷ 120. Velocity fluctuations were also analyzed in the frequency domain, after processing them with the help of the Fast Fourier Transform (FFT) procedure. The spectra of fluctuations provided information about level of the fluctuations in the observed range of Reynolds number. The obtained data were then also used to plot the velocity profiles for the fifth insert of the Kenics mixer. It was concluded that in the investigated range of Reynolds numbers (Re = 20 ÷ 120) a strong dependence of the velocity profiles and the flow fluctuations on Reynolds number was observed.


2015 ◽  
Vol 813-814 ◽  
pp. 652-657
Author(s):  
Seranthian Ramanathan ◽  
M.R. Thansekhar ◽  
P. Rajesh Kanna ◽  
S. Shankara Narayanan

A 3-Dimensional fluid flow over the sudden expansion region of a horizontal duct for various Reynolds numbers have been studied by using the CFD Software package ANSYS Workbench Fluent v 13.0. The expansion ratio and aspect ratio for the sudden expansion are taken as 2.5 and 4 respectively. This work deals with the finding of critical Reynolds number for a fluid and also the length of re-attachments on stepped walls at various Reynolds numbers for the same fluid. The simulation is carried out in sudden expansion for Reynolds number ranging from 200 to 4000. The variations of local Nusselt number along the stepped walls of the sudden expansion are presented with the heat flux of 35 W/m2 on the stepped walls. Also, the plots of pressure coefficient (Cp) along the stepped walls for different Reynolds numbers are presented in this work.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ilyas Khan ◽  
Abid A. Memon ◽  
M. Asif Memon ◽  
Kaleemullah Bhatti ◽  
Gul M. Shaikh ◽  
...  

This article aims to study Newtonian fluid flow modeling and simulation through a rectangular channel embedded in a semicircular cylinder with the range of Reynolds number from 100 to 1500. The fluid is considered as laminar and Newtonian, and the problem is time independent. A numerical procedure of finite element’s least Square technique is implemented through COMSOL multiphysics 5.4. The problem is validated through asymptotic solution governed through the screen boundary condition. The vortex length of the recirculating region formed at the back of the cylinder and orientation of velocity field and pressure will be discussed by three horizontal and four vertical lines along the recirculating region in terms of Reynolds number. It was found that the two vortices of unequal size have appeared and the lengths of these vortices are increased with the increase Reynolds number. Also, the empirical equations through the linear regression procedure were determined for those vortices. The orientation of the velocity magnitude as well as pressure along the lines passing through the center of upper and lower vortices are the same.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1045-1054 ◽  
Author(s):  
Mehdi Ahmadi ◽  
Farsani Khosravi

In this paper, the numerical solution of non-Newtonian two-phase fluid-flow through a channel with a cavity was studied. Carreau-Yasuda non-Newtonian model which represents well the dependence of stress on shear rate was used and the effect of n index of the model and the effect of input Reynolds on the attribution of flow were considered. Governing equations were discretized using the finite volume method on staggered grid and the form of allocating flow parameters on staggered grid is based on marker and cell method. The QUICK scheme is employed for the convection terms in the momentum equations, also the convection term is discretized by using the hybrid upwind-central scheme. In order to increase the accuracy of making discrete, second order Van Leer accuracy method was used. For mixed solution of velocity-pressure field SIMPLEC algorithm was used and for pressure correction equation iteratively line-by-line TDMA solution procedure and the strongly implicit procedure was used. As the results show, by increasing Reynolds number, the time of sweeping the non-Newtonian fluid inside the cavity decreases, the velocity of Newtonian fluid increases and the pressure decreases. In the second section, by increasing n index, the velocity increases and the volume fraction of non-Newtonian fluid after cavity increases and by increasing velocity, the pressure decreases. Also changes in the velocity, pressure and volume fraction of fluids inside the channel and cavity are more sensible to changing the Reynolds number instead of changing n index.


AIP Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 085213
Author(s):  
Ali Zargartalebi ◽  
Mohammad Zargartalebi ◽  
Anne M. Benneker

Author(s):  
Margaret Mkhosi ◽  
Richard Denning ◽  
Audeen Fentiman

The computational fluid dynamics code FLUENT has been used to analyze turbulent fluid flow over pebbles in a pebble bed modular reactor. The objective of the analysis is to evaluate the capability of the various RANS turbulence models to predict mean velocities, turbulent kinetic energy, and turbulence intensity inside the bed. The code was run using three RANS turbulence models: standard k-ε, standard k-ω and the Reynolds stress turbulence models at turbulent Reynolds numbers, corresponding to normal operation of the reactor. For the k-ε turbulence model, the analyses were performed at a range of Reynolds numbers between 1300 and 22 000 based on the approach velocity and the sphere diameter of 6 cm. Predictions of the mean velocities, turbulent kinetic energy, and turbulence intensity for the three models are compared at the Reynolds number of 5500 for all the RANS models analyzed. A unit-cell approach is used and the fluid flow domain consists of three unit cells. The packing of the pebbles is an orthorhombic arrangement consisting of seven layers of pebbles with the mean flow parallel to the z-axis. For each Reynolds number analyzed, the velocity is observed to accelerate to twice the inlet velocity within the pebble bed. From the velocity contours, it can be seen that the flow appears to have reached an asymptotic behavior by the end of the first unit cell. The velocity vectors for the standard k-ε and the Reynolds stress model show similar patterns for the Reynolds number analyzed. For the standard k-ω, the vectors are different from the other two. Secondary flow structures are observed for the standard k-ω after the flow passes through the gap between spheres. This feature is not observable in the case of both the standard k-ε and the RSM. Analysis of the turbulent kinetic energy contours shows that there is higher turbulence kinetic energy near the inlet than inside the bed. As the Reynolds number increases, kinetic energy inside the bed increases. The turbulent kinetic energy values obtained for the standard k-ε and the RSM are similar, showing maximum turbulence kinetic energy of 7.5 m2·s−2, whereas the standard k-ω shows a maximum of about 20 m2·s−2. Another observation is that the turbulence intensity is spread throughout the flow domain for the k-ε and RSM whereas for the k-ω, the intensity is concentrated at the front of the second sphere. Preliminary analysis performed for the pressure drop using the standard k-ε model for various velocities show that the dependence of pressure on velocity varies as V1.76.


1978 ◽  
Vol 21 (155) ◽  
pp. 848-853
Author(s):  
Tadashi MASUYAMA ◽  
Toshio KAWASHIMA

2012 ◽  
Vol 29 (2) ◽  
pp. 207-215 ◽  
Author(s):  
C. H. Hsu ◽  
S. Y. Hu ◽  
K. Y. Kung ◽  
C. C. Kuo ◽  
C. C. Chang

AbstractThis paper studies the behavior of second grade viscoelastic fluid past a cavity in a horizontal channel. The effects of Reynolds number, fluid elasticity and the aspect ratio of the cavity on the flow field are simulated numerically. The equations are converted into the vorticity and stream function equations. The solution is obtained by the finite difference method.The behavior of viscoelastic fluids is quite different from the Newtonian fluid, due to the effects of fluid elasticity. Only one flow pattern appears when the Newtonian fluid past the cavity. However, three kinds of flow patterns appear while the viscoelastic fluids past the cavity by increasing Reynolds number from 20 to 300. The flow field is affected by the fluid elasticity as well as the aspect ratio of the cavity. The transitional flow pattern appears at lower Reynolds number as the higher elasticity fluid past the cavity with larger aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document