Visualization of uniparental inheritance, Mendelian inconsistencies, deletions, and parent of origin effects in single nucleotide polymorphism trio data with SNPtrio

2007 ◽  
Vol 28 (12) ◽  
pp. 1225-1235 ◽  
Author(s):  
Jason C. Ting ◽  
Elisha D.O. Roberson ◽  
Nathaniel D. Miller ◽  
Alana Lysholm-Bernacchi ◽  
Dietrich A. Stephan ◽  
...  
2016 ◽  
Vol 101 (3) ◽  
pp. 914-922 ◽  
Author(s):  
Tricia R. Bhatti ◽  
Karthik Ganapathy ◽  
Alison R. Huppmann ◽  
Laura Conlin ◽  
Kara E. Boodhansingh ◽  
...  

Abstract Context: Acquired insulinomas are rare causes of hyperinsulinemic hypoglycemia in children and are much less common than focal lesions of congenital hyperinsulinism. The latter are known to be associated with isodisomy for paternally transmitted ATP-sensitive potassium channel mutations on 11p15; however, the molecular basis for pediatric insulinomas is not well characterized. Objective: The purpose of this study was to characterize the histopathological and molecular defects in a large group of 12 pediatric insulinomas seen at The Children's Hospital of Philadelphia. Results: Twelve children with insulinomas were seen between 1971 and 2013, compared to 201 cases with focal congenital hyperinsulinism seen between 1997 and 2014. The age of insulinoma patients ranged from 4–16 years at the time of surgery. Features of MEN1 syndrome were present in five of the 12, including four cases with heterozygous mutations of MEN1 on 11q. Immunohistochemical analysis revealed nuclear loss of p57 staining consistent with loss of the maternal 11p15 allele in 11 of the 12 insulinomas, including all five MEN1-associated tumors. Imbalance of the paternal 11p allele was confirmed by single nucleotide polymorphism genotyping and methylation assays of the 11p imprinting control loci in four of five MEN1-associated tumors and six of seven sporadic insulinomas. In addition, single nucleotide polymorphism genotyping revealed extensive tumor aneuploidy beyond chromosome 11. Conclusions: These data indicate that MEN1 mutations are more common in insulinomas in children than in adults. Aneuploidy of chromosome 11 and other chromosomes is common in both MEN1 and non-MEN1 insulinomas. The novel observation of a paternal parent-of-origin effect in all MEN1 and most non-MEN1 tumors suggests a critical role for imprinted growth-regulatory genes in the 11p region in the genesis of β-cell endocrine tumors in children.


Author(s):  
Dương Thanh Thủy ◽  
Taiichiro Ookawa

The sensory and functional properties of rice are predominantly associated with its amylose content. Granule-bound starch synthase (GBSS) encoded by the Waxy (Wx) gene determines the synthesis of amylose, while starch branching enzymes encoded by Sbe genes are involved in the formation of amylopectin. Some studies have demonstrated that Wx gene is the major controller of amylose content but there are one or more modifying genes affecting the amylose content. Three markers,  microsatellite, Single – nucleotide – polymorphism (G/T SNP) in Wx gene and Single – nucleotide – polymorphism (T/C SNP) in Sbe1 gene, were tested for their association with amylose content using sixty-nine  rice accessions from twenty countries. Of the three markers, two markers in Wx gene are significantly associated with amylose content. The combination of two markers in Wx gene (haplotypes) explained 83.8% of the variation in amylose content and discriminated the three market classes of glutinous, low, intermediate and high amylose content of rice from each other. And T/C SNP in Sbe1 locus was not a suitable marker for amylose content. Keywords: marker, amylose content, Waxy gene.


Sign in / Sign up

Export Citation Format

Share Document