Evaluation of the snow cover variation in the Canadian Regional Climate Model over eastern Canada using passive microwave satellite data

2004 ◽  
Vol 18 (6) ◽  
pp. 1127-1138 ◽  
Author(s):  
A. Langlois ◽  
A. Royer ◽  
E. Fillol ◽  
A. Frigon ◽  
R. Laprise
2014 ◽  
Vol 15 (2) ◽  
pp. 614-630 ◽  
Author(s):  
Libo Wang ◽  
Murray MacKay ◽  
Ross Brown ◽  
Paul Bartlett ◽  
Richard Harvey ◽  
...  

Abstract This study evaluates key aspects of the snow cover, cloud cover, and radiation budget simulated by the Canadian Regional Climate Model, version 4 (CRCM4), coupled with two versions of the Canadian Land Surface Scheme (CLASS). CRCM4 coupled with CLASS version 2.7 has been used operationally at Ouranos since 2006, while, more recently, CRCM4 has been coupled experimentally with CLASS 3.5, which includes a number of improvements to the representation of snow cover processes. The simulations showed evidence of a systematic cold temperature bias. Evaluation of cloud cover and radiation fluxes with satellite data suggests this bias is related to insufficient cloud radiative forcing from a combination of underestimated cloud cover, excessive cloud albedo, and too low cloud emissivity in the model. This cold bias is reinforced by a positive snow albedo feedback manifest through earlier snow cover onset in the fall and early winter period. Snow albedo was found to be very sensitive to the treatment of albedo refresh but insignificantly influenced by the partitioning of solid precipitation in CLASS. This study demonstrates that atmospheric forcing can exert a significant impact on the simulation of snow cover and surface albedo. The results highlight the need to evaluate parameterizations in land surface models designed for climate models in fully coupled mode.


2006 ◽  
Vol 27 (5) ◽  
pp. 531-541 ◽  
Author(s):  
Xavier Fettweis ◽  
Hubert Gallée ◽  
Filip Lefebre ◽  
Jean-Pascal van Ypersele

2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


Sign in / Sign up

Export Citation Format

Share Document