fractional snow cover
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 264 ◽  
pp. 112608
Author(s):  
Karl Rittger ◽  
Mitchell Krock ◽  
William Kleiber ◽  
Edward H. Bair ◽  
Mary J. Brodzik ◽  
...  

Author(s):  
Fangbo Pan ◽  
Lingmei Jiang ◽  
Gongxue Wang ◽  
Xu Su ◽  
Xiaonan Zhou

2021 ◽  
Vol 13 (11) ◽  
pp. 2045
Author(s):  
Anaí Caparó Bellido ◽  
Bradley C. Rundquist

Snow cover is an important variable in both climatological and hydrological studies because of its relationship to environmental energy and mass flux. However, variability in snow cover can confound satellite-based efforts to monitor vegetation phenology. This research explores the utility of the PhenoCam Network cameras to estimate Fractional Snow Cover (FSC) in grassland. The goal is to operationalize FSC estimates from PhenoCams to inform and improve the satellite-based determination of phenological metrics. The study site is the Oakville Prairie Biological Field Station, located near Grand Forks, North Dakota. We developed a semi-automated process to estimate FSC from PhenoCam images through Python coding. Compared with previous research employing RGB images only, our use of the monochrome RGB + NIR (near-infrared) reduced pixel misclassification and increased accuracy. The results had an average RMSE of less than 8% FSC compared to visual estimates. Our pixel-based accuracy assessment showed that the overall accuracy of the images selected for validation was 92%. This is a promising outcome, although not every PhenoCam Network system has NIR capability.


2021 ◽  
Vol 2 ◽  
Author(s):  
Karl Rittger ◽  
Kat J. Bormann ◽  
Edward H. Bair ◽  
Jeff Dozier ◽  
Thomas H. Painter

We present the first application of the Snow Covered Area and Grain size model (SCAG) to the Visible Infrared imaging Radiometer Suite (VIIRS) and assess these retrievals with finer‐resolution fractional snow cover maps from Landsat 8 Operational Land Imager (OLI). Because Landsat 8 OLI avoids saturation issues common to Landsat 1–7 in the visible wavelengths, we re-assess the accuracy of the SCAG fractional snow cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS) that were previously evaluated using data from earlier Landsat sensors. Use of the fractional snow cover maps from Landsat 8 OLI shows a negative bias of −0.5% for MODSCAG and −1.3% for VIIRSCAG, whereas previous MODSCAG evaluations found a bias of −7.6% in the Himalaya. We find similar root mean squared error (RMSE) values of 0.133 and 0.125 for MODIS and VIIRS, respectively. The Recall statistic (probability of detection) for cells with more than 15% snow cover in this challenging steep topography was found to be 0.90 for both MODSCAG and VIIRSCAG, significantly higher than previous evaluations based on Landsat 5 Thematic Mapper (TM) and 7 Enhanced Thematic Mapper Plus (ETM+). In addition, daily retrievals from MODIS and VIIRS are consistent across gradients of elevation, slope, and aspect. Different native resolutions of the gridded products at 1 km and 500 m for VIIRS and MODIS, respectively, result in snow cover maps showing a slightly different distribution of values with VIIRS having more mixed pixels and MODIS having 7% more pure snow pixels. Despite the resolution differences, the snow maps from both sensors produce similar total snow-covered areas and snow-line elevations in this region, with R2 values of 0.98 and 0.88, respectively. We find that the SCAG algorithm performs consistently across various spatial resolutions and that fractional snow cover maps from the VIIRS instruments aboard Suomi NPP, JPPS–1, and JPPS–2 can be a suitable replacement as MODIS sensors reach their ends of life.


2021 ◽  
Author(s):  
Semih Kuter ◽  
Cansu Aksu ◽  
Kenan Bolat ◽  
Zuhal Akyurek

<p>The fractional snow cover (FSC) product H35 is a daily operational product based on multi-channel analysis of AVHRR onboard to NOAA and MetOp satellites. H35 is supplied by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (HSAF). The “traditional” H35 FSC product is generated at pixel resolution by exploiting the brightness intensity, which is the convolution of the snow signal and the fraction of snow within the pixel and the sampling is carried out at 1-km intervals. The product for flat/forested regions is generated by Finnish Meteorological Institute (FMI) and the product for mountainous areas is generated by Turkish State Meteorological Service (TSMS). Both products, thereafter, are merged at FMI. This presentation aims to represent the latest findings of our efforts in developing an “alternative” H35 FSC product for the mountainous part by using two data-driven machine learning methodologies, namely, multivariate adaptive regression splines (MARS) and random forests (RFs). In total, 332 Sentinel 2 images over Alps, Tatra Mountains and Turkey acquired between November 2018 and April 2019 are used in order to generate the necessary reference FSC maps for the training of the MARS and RF models. AVHRR bands 1-5, NDSI and NDVI are used as predictor variables. Binary classified Sentinel 2 snow maps, ERA5 snow depth and MODIS MOD10A1 NDSI data are employed in the validation of the models. The results show that both MARS- and RF-based H35 product are i) in good agreement with reference FSC maps (as indicated by low RMSE and relatively high R values) and ii) able to capture the spatial variability of the snow extend. However, MARS-based H35 is preferred for an operational FSC product generation due to the high computational cost required in RF model.</p>


2021 ◽  
Author(s):  
Elzbieta Wisniewski ◽  
Wit Wisniewski

<p>The presented research examines what minimum combination of input variables are required to obtain state-of-the-art fractional snow cover (FSC) estimates for heterogeneous alpine-forested terrains. Currently, one of the most accurate FSC estimators for alpine regions is based on training an Artificial Neural Network (ANN) that can deconvolve the relationships among numerous compounded and possibly non-linear bio-geophysical relations encountered in alpine terrain. Under the assumption that the ANN optimally extracts available information from its input data, we can exploit the ANN as a tool to assess the contributions toward FSC estimation of each of the data sources, and combinations thereof. By assessing the quality of the modeled FSC estimates versus ground equivalent data, suitable combinations of input variables can be identified. High spatial resolution IKONOS images are used to estimate snow cover for ANN training and validation, and also for error assessment of the ANN FSC results. Input variables are initially chosen representing information already incorporated into leading snow cover estimators (ex. two multispectral bands for NDSI, etc.). Additional variables such as topographic slope, aspect, and shadow distribution are evaluated to observe the ANN as it accounts for illumination incidence and directional reflectance of surfaces affecting the viewed radiance in complex terrain. Snow usually covers vegetation and underlying geology partially, therefore the ANN also has to resolve spectral mixtures of unobscured surfaces surrounded by snow. Multispectral imagery if therefore acquired in the fall prior to the first snow of the season and are included in the ANN analyses for assessing the baseline reflectance values of the environment that later become modified by the snow. In this study, nine representative scenarios of input data are selected to analyze the FSC performance. Numerous selections of input data combinations produced good results attesting to the powerful ability of ANNs to extract information and utilize redundancy. The best ANN FSC model performance was achieved when all 15 pre-selected inputs were used. The need for non-linear modeling to estimate FSC was verified by forcing the ANN to behave linearly. The linear ANN model exhibited profoundly decreased FSC performance, indicating that non-linear processing more optimally estimates FSC in alpine-forested environments.</p>


2021 ◽  
Author(s):  
Andri Gunnarsson ◽  
Sigurður M. Garðarsson ◽  
Tómas Jóhannesson ◽  
Finnur Pálsson

<p>Runoff from seasonal snow- and glacier melt is critical for hydropower production and reservoir storage in Iceland as the energy system is strongly dependent on summer inflow. The isolation and high natural climate variability can pose a risk to the energy security of the power system as drought conditions and low-flow periods are usually not foreseen in great advance. Forecasting the timing, spatial distribution and magnitude of seasonal melt is a challenge and influences the operational control of energy infrastructure and long-term resource planning. As hydropower generation provides over 72% of the total average energy produced in Iceland, accurate forecasting of seasonal melt is essential for the operation of the national power system.</p><p>In this study, we present results from a spatially-distributed energy-balance model combined with gap-filled satellite-based time series of fractional snow cover and surface albedo from MODIS. The model reconstructs seasonal snow and glacier melt for the Icelandic highlands providing insight into the spatio-temporal distribution of snow water equivalent over the study period.  The reconstruction method uses daily, satellite-derived estimates of fractional snow cover and albedo to scale the melt flux at every pixel. Modeled snow melt was integrated over time, reconstructing the maximum snowpack/glacier melt for each year. The model runs at a 500 m spatial resolution, with a daily timestep from 1 March to 30 September during 2000 to 2019 spanning the general seasonal snow and glacier melt period.</p><p>Energy-balance components were validated with in-situ observations from the Icelandic highlands and a network of stations operated annually at various Icelandic glaciers. Ground-based measurements of snow water equivalent (snow pits, surface mass balance) were used to validate the model performance as well as discharge observations. Simulations indicate a good performance compared with summer glacier mass balance records from Vatnajökull, Hofsjökull, Langjökull and Mýrdalsjökull. Sparse and discontinuous measurements of seasonal snow water equivalent from snow pillows or transects from snow courses were available from a few location, providing limited capabilities for direct validation for seasonal snow. Discharge observations in highland catchments indicate acceptable performance.</p><p>The results allow for quantification of the spatial distribution of snow water equivalent, relationships to elevation and other topographical parameters as well as between basins and years. Discrimination between seasonal snow and glacier melt on a catchment scale is valuable to analyze the annual variability in these two critical hydrological water sources and how they are related.</p>


Sign in / Sign up

Export Citation Format

Share Document