MRSI: A multimodal proximity remote sensing data set for environment perception in rail transit

Author(s):  
Yihao Chen ◽  
Ning Zhu ◽  
Qian Wu ◽  
Cheng Wu ◽  
Weilong Niu ◽  
...  
2015 ◽  
Vol 7 (12) ◽  
pp. 16688-16732 ◽  
Author(s):  
Ronny Schroeder ◽  
Kyle McDonald ◽  
Bruce Chapman ◽  
Katherine Jensen ◽  
Erika Podest ◽  
...  

2005 ◽  
Vol 30 (1-3) ◽  
pp. 97-108 ◽  
Author(s):  
Cécile Gomez ◽  
Christophe Delacourt ◽  
Pascal Allemand ◽  
Patrick Ledru ◽  
R. Wackerle

2015 ◽  
Vol 8 (8) ◽  
pp. 8509-8562
Author(s):  
A. C. Povey ◽  
R. G. Grainger

Abstract. This paper discusses a best-practice representation of uncertainty in satellite remote sensing data. An estimate of uncertainty is necessary to make appropriate use of the information conveyed by a measurement. Traditional error propagation quantifies the uncertainty in a measurement due to well-understood perturbations in a measurement and auxiliary data – known, quantified "unknowns". The underconstrained nature of most satellite remote sensing observations requires the use of various approximations and assumptions that produce non-linear systematic errors that are not readily assessed – known, unquantifiable "unknowns". Additional errors result from the inability to resolve all scales of variation in the measured quantity – unknown "unknowns". The latter two categories of error are dominant in underconstrained remote sensing retrievals and the difficulty of their quantification limits the utility of existing uncertainty estimates, degrading confidence in such data. This paper proposes the use of ensemble techniques to present multiple self-consistent realisations of a data set as a means of depicting unquantified uncertainties. These are generated using various systems (different algorithms or forward models) believed to be appropriate to the conditions observed. Benefiting from the experience of the climate modelling community, an ensemble provides a user with a more complete representation of the uncertainty as understood by the data producer and greater freedom to consider different realisations of the data.


2021 ◽  
Author(s):  
Kuei-Hua Hsu ◽  
Laurent Longuevergne ◽  
Annette Eicker ◽  
Mehedi Hasan ◽  
Andreas Güntner ◽  
...  

<p>The dynamic global water cycle is of ecological and societal importance as it affects the availability of freshwater resources and influences extreme events such as floods and droughts. This work is set in the frame of the GlobalCDA Research Unit, which has the goal of developing a calibration/data assimilation approach (C/DA) to improve the quantification of freshwater resources by combining the global hydrological model WaterGAP with geodetic (GRACE, altimetry) and remote sensing data. This presentation focuses on the validation of the C/DA results using an independent in-situ groundwater data set based on ~1500 monitoring boreholes in France.</p><p>The resulting validation data set is applied to independently assess the output of several C/DA experiments: data assimilation using different combinations of the available geodetic and remote sensing data sets and different methods of model calibration, based on either an ensemble Kalman filter approach or a Pareto-optimal calibration algorithm.</p><p>To further understand in-situ groundwater and WaterGAP data set, we subtract the coherent signals using Empirical orthogonal function (EOF).  Over 85% variances can be explained by the first 3 EOFs for both data sets.</p>


2014 ◽  
Vol 18 (3) ◽  
pp. 997-1007 ◽  
Author(s):  
C. I. Michailovsky ◽  
P. Bauer-Gottwein

Abstract. River basin management can greatly benefit from short-term river discharge predictions. In order to improve model produced discharge forecasts, data assimilation allows for the integration of current observations of the hydrological system to produce improved forecasts and reduce prediction uncertainty. Data assimilation is widely used in operational applications to update hydrological models with in situ discharge or level measurements. In areas where timely access to in situ data is not possible, remote sensing data products can be used in assimilation schemes. While river discharge itself cannot be measured from space, radar altimetry can track surface water level variations at crossing locations between the satellite ground track and the river system called virtual stations (VS). Use of radar altimetry versus traditional monitoring in operational settings is complicated by the low temporal resolution of the data (between 10 and 35 days revisit time at a VS depending on the satellite) as well as the fact that the location of the measurements is not necessarily at the point of interest. However, combining radar altimetry from multiple VS with hydrological models can help overcome these limitations. In this study, a rainfall runoff model of the Zambezi River basin is built using remote sensing data sets and used to drive a routing scheme coupled to a simple floodplain model. The extended Kalman filter is used to update the states in the routing model with data from 9 Envisat VS. Model fit was improved through assimilation with the Nash–Sutcliffe model efficiencies increasing from 0.19 to 0.62 and from 0.82 to 0.88 at the outlets of two distinct watersheds, the initial NSE (Nash–Sutcliffe efficiency) being low at one outlet due to large errors in the precipitation data set. However, model reliability was poor in one watershed with only 58 and 44% of observations falling in the 90% confidence bounds, for the open loop and assimilation runs respectively, pointing to problems with the simple approach used to represent model error.


2014 ◽  
Vol 7 (8) ◽  
pp. 2719-2732 ◽  
Author(s):  
A. Wiegele ◽  
M. Schneider ◽  
F. Hase ◽  
S. Barthlott ◽  
O. E. García ◽  
...  

Abstract. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.


Sign in / Sign up

Export Citation Format

Share Document