scholarly journals Sequence of a 1.26-kb DNA fragment containing the structural gene for E.coli initiation factor IF3: presence of an AUU initiator codon.

1982 ◽  
Vol 1 (3) ◽  
pp. 311-315 ◽  
Author(s):  
C. Sacerdot ◽  
G. Fayat ◽  
P. Dessen ◽  
M. Springer ◽  
J.A. Plumbridge ◽  
...  
1983 ◽  
Vol 3 (5) ◽  
pp. 796-802
Author(s):  
Richard B. Needleman ◽  
Corinne Michels

Maltose fermentation in Saccharomyces spp. requires the presence of any one of five unlinked genes: MAL1, MAL2, MAL3, MAL4 , or MAL6. Although the genes are functionally equivalent, their natures and relationships to each other are not known. At least three proteins are necessary for maltose fermentation: maltase, maltose permease, and a regulatory protein. The MAL genes may code for one or more of these proteins. Recently a DNA fragment containing a maltase structural gene has been cloned from a MAL6 strain, CB11, to produce plasmid pMAL9-26. We have conducted genetic and physical analyses of strain CB11. The genetic analysis has demonstrated the presence of two cryptic MAL genes in CB11, MAL1g and MAL3g (linked to MAL1 and to MAL3 , respectively), in addition to the MAL6 locus. The physical analysis, which used a subclone of plasmid pMAL9-26 as a probe, detected three Hin dIII genomic fragments with homology to the probe. Each fragment was shown to be linked to one of the MAL loci genetically demonstrated to be present in CB11. Our results indicate that the cloned maltase structural gene in plasmid pMAL9-26 is linked to MAL6. Since the MAL6 locus has previously been shown to contain a regulatory gene, the MAL6 locus must be a complex locus containing at least two of the factors needed for maltose fermentation: the structural gene for maltase and the maltase regulatory protein. The absence of other fragments which hybridize to the MAL6 -derived probe shows that either MAL2 and MAL4 are not related to MAL6 , or the DNA corresponding to these genes is absent from the MAL6 strain CB11.


1983 ◽  
Vol 3 (5) ◽  
pp. 796-802 ◽  
Author(s):  
Richard B. Needleman ◽  
Corinne Michels

Maltose fermentation inSaccharomycesspp. requires the presence of any one of five unlinked genes:MAL1, MAL2, MAL3, MAL4, orMAL6.Although the genes are functionally equivalent, their natures and relationships to each other are not known. At least three proteins are necessary for maltose fermentation: maltase, maltose permease, and a regulatory protein. TheMALgenes may code for one or more of these proteins. Recently a DNA fragment containing a maltase structural gene has been cloned from aMAL6strain, CB11, to produce plasmid pMAL9-26. We have conducted genetic and physical analyses of strain CB11. The genetic analysis has demonstrated the presence of two crypticMALgenes in CB11,MAL1gandMAL3g(linked toMAL1and toMAL3, respectively), in addition to theMAL6locus. The physical analysis, which used a subclone of plasmid pMAL9-26 as a probe, detected threeHindIII genomic fragments with homology to the probe. Each fragment was shown to be linked to one of theMALloci genetically demonstrated to be present in CB11. Our results indicate that the cloned maltase structural gene in plasmid pMAL9-26 is linked toMAL6.Since theMAL6locus has previously been shown to contain a regulatory gene, theMAL6locus must be a complex locus containing at least two of the factors needed for maltose fermentation: the structural gene for maltase and the maltase regulatory protein. The absence of other fragments which hybridize to theMAL6-derived probe shows that eitherMAL2andMAL4are not related toMAL6, or the DNA corresponding to these genes is absent from theMAL6strain CB11.


Gene ◽  
1980 ◽  
Vol 11 (1-2) ◽  
pp. 33-42 ◽  
Author(s):  
J.A. Plumbridge ◽  
M. Springer ◽  
M. Graffe ◽  
R. Goursot ◽  
M. Grunberg-Manago

1979 ◽  
Vol 169 (3) ◽  
pp. 337-343 ◽  
Author(s):  
M. Springer ◽  
M. Graffe ◽  
M. Grunberg-Manago

1989 ◽  
Vol 169 (2) ◽  
pp. 597-602 ◽  
Author(s):  
N S Bora ◽  
D M Lublin ◽  
B V Kumar ◽  
R D Hockett ◽  
V M Holers ◽  
...  

The structural gene for membrane cofactor protein (MCP), a widely distributed C3b/C4b binding regulatory glycoprotein of the complement system, has been mapped to the same locus as the structural genes for CR1, CR2, DAF, and C4bp. The order of the genes within an approximately 800-kb DNA fragment on the long arm of chromosome 1 is MCP-CR1-CR2-DAF-C4bp. Further, the MCP gene maps to within 100 kb of 3' end of the CR1 gene.


2002 ◽  
Vol 367 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Nilce N. HASHIMOTO ◽  
Larissa S. CARNEVALLI ◽  
Beatriz A. CASTILHO

The heterotrimeric eukaryotic initiation factor (eIF) 2 binds the initiator methionyl-tRNA in a GTP-dependent mode and delivers it to the 40S ribosomal subunit. In the present study, we have identified amino acid residues in eIF2β required for binding to eIF2γ in yeast. Alteration of six residues in the central region of eIF2β abolished this interaction, as determined by GST-pull down and two-hybrid assays, and leads to cell lethality. Substitution of 131Tyr and 132Ser by alanine residues (131YS), although abolishing the binding to eIF2γ in these assays, resulted in a functional but defective protein in vivo, imparting a temperature-sensitive growth phenotype to cells. A dramatically weakened association of this mutant protein with eIF2γ in vivo was shown by co-immunoprecipitation. The 131YS mutation in eIF2β allows translation to initiate at non-AUG codons, as defined by the ability of cells carrying an initiator codon mutation in the HIS4 mRNA to grow in the absence of histidine. The combination of this mutation with the 264Ser→Tyr alteration, a previously isolated suppressor of initiator codon mutations which has been shown to increase the spontaneous GTP hydrolysis in the ternary complex, caused a recessive lethality, suggesting additive defects. Thus the impaired interaction of these two subunits represents a novel type of defect in eIF2 function, providing in vivo evidence that the strength of interaction between eIF2β and eIF2γ defines the correct usage of the AUG codon for translation initiation.


1996 ◽  
Vol 16 (5) ◽  
pp. 2307-2313 ◽  
Author(s):  
T Naranda ◽  
S E MacMillan ◽  
T F Donahue ◽  
J W Hershey

A genetic reversion analysis at the HIS4 locus in Saccharomyces cerevisiae has identified SUI1 as a component of the translation initiation complex which plays an important role in ribosomal recognition of the initiator codon. SUI1 is an essential protein of 12.3 kDa that is required in vivo for the initiation of protein synthesis. Here we present evidence that SUI1 is identical to the smallest subunit, p16, of eukaryotic translation initiation factor 3 (eIF-3) in S. cerevisiae. SUI1 and eIF3-p16 comigrate upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and cross-react with anti-SUI1 and anti-eIF3 antisera. Anti-SUI1 antisera immunoprecipitate all of the subunits of eIF3, whereas antisera against the eIF3 complex and the individual PRT1 and GCD10 subunits of eIF3 immunoprecipitate SUI1. Finally, the N-terminal amino acid sequence of a truncated form of eIF3-p16 matches the sequence of SUI1. eIF3 isolated from a sui1(ts) strain at 37 degrees C lacks SUI1 and fails to exhibit eIF3 activity in the in vitro assay for methionyl-puromycin synthesis. A free form of SUI1 separate from the eIF3 complex is found in S. cerevisiae but lacks activity in the in vitro assay. The results, together with prior genetic experiments, indicate that SUI1 is essential for eIF3 activity and functions as part of eIF3 and in concert with eIF2 to promote eIF2-GTP-Met-tRNAi ternary complex recognition of the initiator codon.


1995 ◽  
Vol 95 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Heping Cao ◽  
Thomas D. Sullivan ◽  
Charles D. Boyer ◽  
Jack C. Shannon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document