scholarly journals Activation of SV40 DNA replication in vitro by cellular protein phosphatase 2A.

1989 ◽  
Vol 8 (12) ◽  
pp. 3891-3898 ◽  
Author(s):  
D.M. Virshup ◽  
M.G. Kauffman ◽  
T.J. Kelly
1994 ◽  
Vol 14 (7) ◽  
pp. 4616-4623
Author(s):  
A Cegielska ◽  
S Shaffer ◽  
R Derua ◽  
J Goris ◽  
D M Virshup

The ability of simian virus 40 (SV40) large T antigen to catalyze the initiation of viral DNA replication is regulated by its phosphorylation state. Previous studies have identified the free catalytic subunit of protein phosphatase 2A (PP2Ac) as the cellular phosphatase which can remove inhibitory phosphoryl groups from serines 120 and 123. The catalytic C subunit exists in the cell complexed with a 65-kDa A subunit and one of several B subunits. To determine if any of the holoenzymes could activate T antigen, we tested the ability of the heterodimeric AC and two heterotrimeric ABC forms to stimulate T-antigen function in unwinding the origin of SV40 DNA replication. Only free catalytic subunit C and the heterotrimeric form with a 72-kDa B subunit (PP2A-T72) could stimulate T-antigen-dependent origin unwinding. Both the dimeric form (PP2A-D) and the heterotrimer with a 55-kDa B subunit (PP2A-T55) actively inhibited T-antigen function. We found that PP2A-T72 activated T antigen by dephosphorylating serines 120 and 123, while PP2A-D and PP2A-T55 inactivated T antigen by dephosphorylating the p34cdc2 target site, threonine 124. Thus, alterations in the subunit composition of PP2A holoenzymes have significant functional consequences for the initiation of in vitro SV40 DNA replication. The regulatory B subunits of PP2A may play a role in regulating SV40 DNA replication in infected cells as well.


1994 ◽  
Vol 14 (7) ◽  
pp. 4616-4623 ◽  
Author(s):  
A Cegielska ◽  
S Shaffer ◽  
R Derua ◽  
J Goris ◽  
D M Virshup

The ability of simian virus 40 (SV40) large T antigen to catalyze the initiation of viral DNA replication is regulated by its phosphorylation state. Previous studies have identified the free catalytic subunit of protein phosphatase 2A (PP2Ac) as the cellular phosphatase which can remove inhibitory phosphoryl groups from serines 120 and 123. The catalytic C subunit exists in the cell complexed with a 65-kDa A subunit and one of several B subunits. To determine if any of the holoenzymes could activate T antigen, we tested the ability of the heterodimeric AC and two heterotrimeric ABC forms to stimulate T-antigen function in unwinding the origin of SV40 DNA replication. Only free catalytic subunit C and the heterotrimeric form with a 72-kDa B subunit (PP2A-T72) could stimulate T-antigen-dependent origin unwinding. Both the dimeric form (PP2A-D) and the heterotrimer with a 55-kDa B subunit (PP2A-T55) actively inhibited T-antigen function. We found that PP2A-T72 activated T antigen by dephosphorylating serines 120 and 123, while PP2A-D and PP2A-T55 inactivated T antigen by dephosphorylating the p34cdc2 target site, threonine 124. Thus, alterations in the subunit composition of PP2A holoenzymes have significant functional consequences for the initiation of in vitro SV40 DNA replication. The regulatory B subunits of PP2A may play a role in regulating SV40 DNA replication in infected cells as well.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii115-ii115
Author(s):  
Rongze Olivia Lu ◽  
Winson Ho ◽  
Brandon Chiou

Abstract Checkpoint immunotherapy (ICB) thus far has shown limited efficacy against brain tumors, such as medulloblastoma (MB). Its low mutational burden is thought to result in a paucity of neoantigen to trigger an effective T-cell response. Natural killer (NK) cells, can recognize tumor cells independently of neoantigens, making them appealing against MBs. Modulation of NK cells to enhance cytotoxicity against MBs could be a novel treatment strategy. Protein Phosphatase 2A (PP2A), a ubiquitous serine/threonine phosphatase, has been shown to inhibit IFNg and Granzyme B production by NK cells. We hypothesize that NK92, a transformed human NK cell line, has intrinsic activity against human MB cells and that inhibiting PP2A pharmacologically can enhance cytotoxicity of NK92 cells. We performed NK cytotoxicity assay and granulation assay against human MB cell line D425. We also used a small molecular inhibitor, LB100, to modulate PP2A activity in NK92. NK92 cells were co-cultured with D425, in increasing E:T (Effector:Target) ratio for 4 hours. D425 cells were pre-labeled with CellTrace Violet dye. The percentage of D425 (Violet+) cells in apoptosis (Cas3/7+) or necrosis (AAD+) were compared with different ET ratios to quantify NK mediated cell cytotoxicity. We also measured CD107a expression in NK92 to assess granulation with LB100 treatment. D425 cells were sensitive to NK92 killing. Percentage of D425 cells either apoptotic or necrotic increased with increasing ET ratio, suggesting that there was NK92 mediated cytotoxicity. Percentage of killed D425 cells ranged from 18% at baseline (without NK92) to 80% at ET ratio of 20. Inhibition of PP2A using LB100, enhanced NK92 degranulation. CD107a+ NK92 cells increased from 19% to 28% with 8uM of LB100. NK92 cells are cytotoxic against MB cells in vitro and inhibition of PP2A in NK cells can enhance their activity against MB cells.


1991 ◽  
Vol 11 (8) ◽  
pp. 4282-4285 ◽  
Author(s):  
R Ruediger ◽  
J E Van Wart Hood ◽  
M Mumby ◽  
G Walter

The levels of the A, B, and C subunits of protein phosphatase 2A in extracts from synchronized embryonic bovine tracheal cells were determined by immunoblotting with subunit-specific antibodies. A constant amount of each subunit was found in resting cells as well as in growing cells from all stages of the cell cycle. The phosphatase activity of protein phosphatase 2A was also constant. A quantitative comparison showed that the A and C subunits were present in similar amounts, whereas the B subunit was present at a significantly lower level. Together, the A, B, and C subunits represented approximately 0.2% of the total cellular protein.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Arunachal Chatterjee ◽  
Neelakantan Vasudevan ◽  
Maradumane Mohan ◽  
Elizabeth Martelli ◽  
John George ◽  
...  

Beta-Adrenergic receptors (bARs) play a key role in regulating cardiac function. Loss of surface receptors and desensitization (impaired G-protein coupling) of bARs are hallmarks of a failing heart. Desensitization occurs by phosphorylation of bARs. The bARs are resensitized by protein phosphatase 2A (PP2A) mediated dephosphorylation in the endosomes before recycling to the plasma membrane. While mechanisms of desensitization are well understood, little is known about mechanisms regulating resensitization. Our previous work has shown that PI3Kg phosphorylates an endogenous inhibitor of PP2A (I2PP2A) on serine 9 & 93, which then robustly binds to PP2A inhibiting bAR resensitization. Since it is not known whether resensitization is altered in response to cardiac stress or whether altered bAR resensitization contributes to cardiac hypertrophy and failure, we generated transgenic mice with cardiomyocyte specific overexpression of wild type I2PP2A (WT I2PP2A Tg), I2PP2A phospho-mimetic mutants S9, 93D and mutants with constitutively dephosphorylated S9, 93A state. To test whether resensitization is critical in the development of bAR dysfunction during cardiac hypertrophy, WT I2PP2A Tg mice were subjected to transverse aortic constriction (TAC) for 8 weeks. Echocardiographic analysis post-TAC showed that WT I2PP2A Tg mice had accelerated cardiac dysfunction compared to their littermate controls [HW (mg)/BW(g): Sham: WT - 4.83, WT I2PP2A Tg - 4.82, TAC: WT- 6.47, WT I2PP2A Tg - 7.61; %EF: Sham: WT - 83.53, WT I2PP2A Tg - 74.72, TAC: WT - 70.47, WT I2PP2A Tg - 49.62]. To directly test whether resensitization mechanisms are altered, plasma membranes and endosomes were isolated and in vitro Adenylyl Cyclase activity assessed. Our studies show that compared to littermate controls, WT I2PP2A Tg had altered in vitro adenylyl cyclase activity showing that resensitization mechanisms in the endosomes may in part, contribute to cardiac dysfunction. Mechanistic underpinnings of the resensitization pathways using the I2PP2A S9, 93A and S9, 93D will be presented showing that bAR resensitization a process considered passive is altered in conditions of cardiac stress that in part may contribute to bAR dysfunction leading to cardiac hypertrophy and heart failure.


2000 ◽  
Vol 20 (21) ◽  
pp. 8143-8156 ◽  
Author(s):  
Haifeng Yang ◽  
Wei Jiang ◽  
Matthew Gentry ◽  
Richard L. Hallberg

ABSTRACT CDC55 encodes a Saccharomyces cerevisiaeprotein phosphatase 2A (PP2A) regulatory subunit.cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, butcdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore,cdc55-null cells exhibit a hyperphosphorylation of Y19. For these reasons, we have examined in wild-type and cdc55-null cells the levels and activities of the kinase (Swe1p) and phosphatase (Mih1p) that normally regulate the extent of Cdc28 Y19 phosphorylation. We find that Mih1p levels are comparable in the two strains, and an estimate of the in vivo and in vitro phosphatase activity of this enzyme in the two cell types indicates no marked differences. By contrast, while Swe1p levels are similar in unsynchronized and S-phase-arrested wild-type and cdc55-null cells, Swe1 kinase is found at elevated levels in mitosis-arrestedcdc55-null cells. This excess Swe1p incdc55-null cells is the result of ectopic stabilization of this protein during G2 and M, thereby accounting for the accumulation of Swe1p in mitosis-arrested cells. We also present evidence indicating that, in cdc55-null cells, misregulated PP2A phosphatase activity is the cause of both the ectopic stabilization of Swe1p and the production of the morphologically abnormal phenotype.


2000 ◽  
Vol 20 (3) ◽  
pp. 1021-1029 ◽  
Author(s):  
Zhen Yan ◽  
Sergei A. Fedorov ◽  
Marc C. Mumby ◽  
R. Sanders Williams

ABSTRACT Initiation of DNA replication in eukaryotes is dependent on the activity of protein phosphatase 2A (PP2A), but specific phosphoprotein substrates pertinent to this requirement have not been identified. A novel regulatory subunit of PP2A, termed PR48, was identified by a yeast two-hybrid screen of a human placental cDNA library, using human Cdc6, an essential component of prereplicative complexes, as bait. PR48 binds specifically to an amino-terminal segment of Cdc6 and forms functional holoenzyme complexes with A and C subunits of PP2A. PR48 localizes to the nucleus of mammalian cells, and its forced overexpression perturbs cell cycle progression, causing a G1 arrest. These results suggest that dephosphorylation of Cdc6 by PP2A, mediated by a specific interaction with PR48, is a regulatory event controlling initiation of DNA replication in mammalian cells.


2004 ◽  
Vol 380 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Sari LONGIN ◽  
Jan JORDENS ◽  
Ellen MARTENS ◽  
Ilse STEVENS ◽  
Veerle JANSSENS ◽  
...  

We have described recently the purification and cloning of PP2A (protein phosphatase 2A) leucine carboxylmethyltransferase. We studied the purification of a PP2A-specific methylesterase that co-purifies with PP2A and found that it is tightly associated with an inactive dimeric or trimeric form of PP2A. These inactive enzyme forms could be reactivated as Ser/Thr phosphatase by PTPA (phosphotyrosyl phosphatase activator of PP2A). PTPA was described previously by our group as a protein that stimulates the in vitro phosphotyrosyl phosphatase activity of PP2A; however, PP2A-specific methyltransferase could not bring about the activation. The PTPA activation could be distinguished from the Mn2+ stimulation observed with some inactive forms of PP2A, also found associated with PME-1 (phosphatase methylesterase 1). We discuss a potential new function for PME-1 as an enzyme that stabilizes an inactivated pool of PP2A.


Sign in / Sign up

Export Citation Format

Share Document