scholarly journals Loss of a Protein Phosphatase 2A Regulatory Subunit (Cdc55p) Elicits Improper Regulation of Swe1p Degradation

2000 ◽  
Vol 20 (21) ◽  
pp. 8143-8156 ◽  
Author(s):  
Haifeng Yang ◽  
Wei Jiang ◽  
Matthew Gentry ◽  
Richard L. Hallberg

ABSTRACT CDC55 encodes a Saccharomyces cerevisiaeprotein phosphatase 2A (PP2A) regulatory subunit.cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, butcdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore,cdc55-null cells exhibit a hyperphosphorylation of Y19. For these reasons, we have examined in wild-type and cdc55-null cells the levels and activities of the kinase (Swe1p) and phosphatase (Mih1p) that normally regulate the extent of Cdc28 Y19 phosphorylation. We find that Mih1p levels are comparable in the two strains, and an estimate of the in vivo and in vitro phosphatase activity of this enzyme in the two cell types indicates no marked differences. By contrast, while Swe1p levels are similar in unsynchronized and S-phase-arrested wild-type and cdc55-null cells, Swe1 kinase is found at elevated levels in mitosis-arrestedcdc55-null cells. This excess Swe1p incdc55-null cells is the result of ectopic stabilization of this protein during G2 and M, thereby accounting for the accumulation of Swe1p in mitosis-arrested cells. We also present evidence indicating that, in cdc55-null cells, misregulated PP2A phosphatase activity is the cause of both the ectopic stabilization of Swe1p and the production of the morphologically abnormal phenotype.

2007 ◽  
Vol 28 (2) ◽  
pp. 873-882 ◽  
Author(s):  
Alessandra Magenta ◽  
Pasquale Fasanaro ◽  
Sveva Romani ◽  
Valeria Di Stefano ◽  
Maurizio C. Capogrossi ◽  
...  

ABSTRACT The retinoblastoma tumor suppressor protein (pRb) regulates cell proliferation and differentiation via phosphorylation-sensitive interactions with specific targets. While the role of cyclin/cyclin-dependent kinase complexes in the modulation of pRb phosphorylation has been extensively studied, relatively little is known about the molecular mechanisms regulating phosphate removal by phosphatases. Protein phosphatase 2A (PP2A) is constituted by a core dimer bearing catalytic activity and one variable B regulatory subunit conferring target specificity and subcellular localization. We previously demonstrated that PP2A core dimer binds pRb and dephosphorylates pRb upon oxidative stress. In the present study, we identified a specific PP2A-B subunit, PR70, that was associated with pRb both in vitro and in vivo. PR70 overexpression caused pRb dephosphorylation; conversely, PR70 knockdown prevented both pRb dephosphorylation and DNA synthesis inhibition induced by oxidative stress. Moreover, we found that intracellular Ca2+ mobilization was necessary and sufficient to trigger pRb dephosphorylation and PP2A phosphatase activity of PR70 was Ca2+ induced. These data underline the importance of PR70-Ca2+ interaction in the signal transduction mechanisms triggered by redox imbalance and leading to pRb dephosphorylation.


2004 ◽  
Vol 380 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Sari LONGIN ◽  
Jan JORDENS ◽  
Ellen MARTENS ◽  
Ilse STEVENS ◽  
Veerle JANSSENS ◽  
...  

We have described recently the purification and cloning of PP2A (protein phosphatase 2A) leucine carboxylmethyltransferase. We studied the purification of a PP2A-specific methylesterase that co-purifies with PP2A and found that it is tightly associated with an inactive dimeric or trimeric form of PP2A. These inactive enzyme forms could be reactivated as Ser/Thr phosphatase by PTPA (phosphotyrosyl phosphatase activator of PP2A). PTPA was described previously by our group as a protein that stimulates the in vitro phosphotyrosyl phosphatase activity of PP2A; however, PP2A-specific methyltransferase could not bring about the activation. The PTPA activation could be distinguished from the Mn2+ stimulation observed with some inactive forms of PP2A, also found associated with PME-1 (phosphatase methylesterase 1). We discuss a potential new function for PME-1 as an enzyme that stabilizes an inactivated pool of PP2A.


2011 ◽  
Vol 22 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Sidonie Wicky ◽  
Hendri Tjandra ◽  
David Schieltz ◽  
John Yates ◽  
Douglas R. Kellogg

The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2ACdc55). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2ACdc55and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle–dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2ACdc55and suggest that upstream signals that regulate PP2ACdc55may play an important role in controlling entry into mitosis.


2006 ◽  
Vol 26 (11) ◽  
pp. 4017-4027 ◽  
Author(s):  
Ana M. Gil-Bernabé ◽  
Francisco Romero ◽  
M. Cristina Limón-Mortés ◽  
María Tortolero

ABSTRACT Sister chromatid segregation is triggered at the metaphase-to-anaphase transition by the activation of the protease separase. For most of the cell cycle, separase activity is kept in check by its association with the inhibitory chaperone securin. Activation of separase occurs at anaphase onset, when securin is targeted for destruction by the anaphase-promoting complex or cyclosome E3 ubiquitin protein ligase. This results in the release of the cohesins from chromosomes, which in turn allows the segregation of sister chromatids to opposite spindle poles. Here we show that human securin (hSecurin) forms a complex with enzymatically active protein phosphatase 2A (PP2A) and that it is a substrate of the phosphatase, both in vitro and in vivo. Treatment of cells with okadaic acid, a potent inhibitor of PP2A, results in various hyperphosphorylated forms of hSecurin which are extremely unstable, due to the action of the Skp1/Cul1/F-box protein complex ubiquitin ligase. We propose that PP2A regulates hSecurin levels by counteracting its phosphorylation, which promotes its degradation. Misregulation of this process may lead to the formation of tumors, in which overproduction of hSecurin is often observed.


1993 ◽  
Vol 106 (1) ◽  
pp. 219-226 ◽  
Author(s):  
E. Kam ◽  
K.A. Resing ◽  
S.K. Lim ◽  
B.A. Dale

The aggregation of cellular intermediate filaments is an important step in the terminal differentiation of keratinocytes. It has been shown that epidermal filaggrin can cause intermediate filaments to aggregate in vitro and may also have the same function in vivo. Filaggrin is derived via dephosphorylation and proteolysis from a highly phosphorylated precursor, profilaggrin, which is found in the granular layer of the epidermis. Using casein kinase II phosphorylated filaggrin as substrate, a profilaggrin phosphatase has been partially purified from rat epidermal homogenate by three chromatographic steps (DE52, hydroxylapatite and S200 gel filtration). Profilaggrin phosphatase activity eluted from the last column has a Km of 0.12 mM and a Vmax of 8 nmol/mg/min with respect to phosphofilaggrin. Results obtained by initial rate analysis showed that the enzymatic activity is not affected by phospho-tyrosyl phosphatase inhibitors and the active fractions preferentially dephosphorylate the alpha subunit of phosphorylase kinase which has been phosphorylated by cAMP-dependent kinase. These results suggest that epidermal profilaggrin phosphatase is not a phospho-tyrosyl phosphatase or a type 1 phospho-seryl/phospho-threonyl phosphatase. Dephosphorylation is not affected by EDTA, calcium or magnesium, but is very sensitive to okadaic acid inhibition (IC50 = 80 pM), suggesting that the enzymatic activity is related to that of the protein phosphatase 2A (PP2A).(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 8 (386) ◽  
pp. ra72-ra72 ◽  
Author(s):  
Sean C. Little ◽  
Jerry Curran ◽  
Michael A. Makara ◽  
Crystal F. Kline ◽  
Hsiang-Ting Ho ◽  
...  

1993 ◽  
Vol 13 (3) ◽  
pp. 1657-1665 ◽  
Author(s):  
C L Carpenter ◽  
K R Auger ◽  
B C Duckworth ◽  
W M Hou ◽  
B Schaffhausen ◽  
...  

We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.


1999 ◽  
Vol 20 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Jean Deruere ◽  
Karin Jackson ◽  
Christine Garbers ◽  
Dieter Soll ◽  
Alison DeLong

Sign in / Sign up

Export Citation Format

Share Document