Synergism in ternary complex formation between the dimeric glycoprotein p67SRF, polypeptide p62TCF and the c-fos serum response element.

1990 ◽  
Vol 9 (4) ◽  
pp. 1123-1130 ◽  
Author(s):  
H. Schröter ◽  
C.G. Mueller ◽  
K. Meese ◽  
A. Nordheim
1996 ◽  
Vol 24 (7) ◽  
pp. 1345-1351 ◽  
Author(s):  
B. V. Latinkic ◽  
M. Zeremski ◽  
L. F. Lau

1997 ◽  
Vol 17 (10) ◽  
pp. 5667-5678 ◽  
Author(s):  
A Giovane ◽  
P Sobieszczuk ◽  
A Ayadi ◽  
S M Maira ◽  
B Wasylyk

The Ras signalling pathway targets transcription factors such as the ternary complex factors that are recruited by the serum response factor to form complexes on the serum response element (SRE) of the fos promoter. We have identified a new ternary complex factor, Net-b. We report the features of the net gene and show that it produces several splice variants, net-b and net-c. net-b RNA and protein are expressed in a variety of tissues and cell lines. net-c RNA is expressed at low levels, and the protein was not detected, raising the possibility that it is a cryptic splice variant. We have studied the composition of ternary complexes that form on the SRE of the fos promoter with extracts from fibroblasts (NIH 3T3) cultured under various conditions and pre-B cells (70Z/3) before and after differentiation with lipopolysaccharide (LPS). The fibroblast complexes contain mainly Net-b followed by Sap1 and Elk1. Net-b complexes, as well as Sap1 and Elk1, are induced by epidermal growth factor (EGF) stimulation of cells cultured in low serum. Pre-B-cell complexes contain mainly Sap1, with less of Net-b and little of Elk1. There is little change upon LPS-induced differentiation compared to the increase with EGF in fibroblasts. We have also found that Net-b is a nuclear protein that constitutively represses transcription. Net-b is not activated by Ras signalling, in contrast to Net, Sap1a, and Elk1. We have previously reported that down-regulation of Net proteins with antisense RNA increases SRE activity. The increase in SRE activity is observed at low serum levels and is even greater after serum stimulation, showing that the SRE is under negative regulation by Net proteins and the level of repression increases during induction. Net-b, the predominant factor in ternary complexes in fibroblasts, may both keep the activity of the SRE low in the absence of strong inducing conditions and rapidly shut the activity off after stimulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Jean Paul Kovalik ◽  
Manda Orgeron ◽  
Desiree Wanders ◽  
...  

AbstractThe initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4’s prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.


Sign in / Sign up

Export Citation Format

Share Document