Both Arabidopsis TATA binding protein (TBP) isoforms are functionally identical in RNA polymerase II and III transcription in plant cells: evidence for gene-specific changes in DNA binding specificity of TBP.

1993 ◽  
Vol 12 (9) ◽  
pp. 3519-3528 ◽  
Author(s):  
D.J. Heard ◽  
T. Kiss ◽  
W. Filipowicz
2008 ◽  
Vol 105 (47) ◽  
pp. 18296-18301 ◽  
Author(s):  
L. R. Benjamin ◽  
H.-J. Chung ◽  
S. Sanford ◽  
F. Kouzine ◽  
J. Liu ◽  
...  

1990 ◽  
Vol 10 (7) ◽  
pp. 3810-3812
Author(s):  
C S Pikaard ◽  
S D Smith ◽  
R H Reeder ◽  
L Rothblum

Rat cells contain a DNA-binding polymerase I transcription factor, rUBF, with properties similar to UBF homologs that have been purified from both human (hUBF) and frog (xUBF) cells. In this note we report the affinity purification of rUBF to apparent homogeneity and show that UBFs from both rat and frog have identical footprinting characteristics on templates from either species. Furthermore, xUBF was able to stimulate transcription from rat RNA polymerase I promoters in a partially fractionated rat extract that was UBF dependent. These results strengthen the conclusion that all vertebrate cells contain a UBF homolog whose DNA-binding specificity and function have been strongly conserved.


2007 ◽  
Vol 27 (8) ◽  
pp. 2886-2896 ◽  
Author(s):  
Arindam Dasgupta ◽  
Rebekka O. Sprouse ◽  
Sarah French ◽  
Pavel Aprikian ◽  
Robert Hontz ◽  
...  

ABSTRACT Mot1 is an essential, conserved, TATA-binding protein (TBP)-associated factor in Saccharomyces cerevisiae with well-established roles in the global control of RNA polymerase II (Pol II) transcription. Previous results have suggested that Mot1 functions exclusively in Pol II transcription, but here we report a novel role for Mot1 in regulating transcription by RNA polymerase I (Pol I). In vivo, Mot1 is associated with the ribosomal DNA, and loss of Mot1 results in decreased rRNA synthesis. Consistent with a direct role for Mot1 in Pol I transcription, Mot1 also associates with the Pol I promoter in vitro in a reaction that depends on components of the Pol I general transcription machinery. Remarkably, in addition to Mot1's role in initiation, rRNA processing is delayed in mot1 cells. Taken together, these results support a model in which Mot1 affects the rate and efficiency of rRNA synthesis by both direct and indirect mechanisms, with resulting effects on transcription activation and the coupling of rRNA synthesis to processing.


1992 ◽  
Vol 228 (2) ◽  
pp. 387-394 ◽  
Author(s):  
Alain Lescure ◽  
Graham Tebb ◽  
Iain W. Mattaj ◽  
Alain Krol ◽  
Philippe Carbon

Sign in / Sign up

Export Citation Format

Share Document