enhancer binding protein
Recently Published Documents


TOTAL DOCUMENTS

1585
(FIVE YEARS 166)

H-INDEX

103
(FIVE YEARS 5)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010018
Author(s):  
Jianghong Cheng ◽  
Jia Liang ◽  
Yingzhe Li ◽  
Xia Gao ◽  
Mengjun Ji ◽  
...  

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Benjamin Freije ◽  
Ricardo Melo Ferreira ◽  
Ying-Hua Cheng ◽  
Samir Parikh ◽  
Michael Eadon

Background: Worldwide, one in eleven adults have diabetes mellitus and 30% to 40% will develop diabetic kidney disease (DKD). A mechanistic understanding of DKD is crucial to develop treatment strategies. To unravel DKD’s pathogenesis, single cell (scRNA) sequencing has proven a powerful tool, but is limited by a lack of localization. Spatial transcriptomics allows the mapping of scRNA sequencing data back to histology. Methods: Frozen human nephrectomy and biopsy samples were processed according to Visium spatial gene expression protocols, stained with H&E, and imaged. Samples were permeabilized for RNA capture, reverse transcribed and sequenced on an Illumina NovaSeq 6000. Mapping and counting were completed in Space Ranger and data was processed in Seurat. Samples were laser microdissected, protein was isolated, and protein was quantified by HPLC-MS. Results: Clusters from scRNAseq were mapped upon reference and DKD spatial transcriptomic images (N=4 reference, 2 DKD). Differentially expressed genes were identified in diabetic kidneys, including the upregulation of Adipocyte Enhancer Binding Protein (AEBP1).  Pathway analysis revealed enrichment of extracellular matrix organization and immune process pathways. To increase the confidence of these findings, glomeruli and the tubulointerstitium were laser microdissected (N=7 diseased, 4 reference) for proteomic analysis. AEBP1 was upregulated in the tubular interstitium of diseased kidneys and selectively upregulated in the glomeruli of Diabetic Nephropathy samples (N=2). AEBP1 localized to the interstitium by spatial transcriptomics and was expressed in highly fibrotic regions. Glomerular expression was not observed due to glomerulosclerosis. Conclusion: AEBP1 upregulation is a marker of interstitial fibrosis, with specific expression in the glomeruli of diabetic nephropathy specimens with glomerulosclerosis. Impact: This is the first study utilizing spatial transcriptomics to define and localize markers of human kidney disease. Confirmatory studies are required in larger sample sizes. AEBP1 is a previously unidentified marker of DKD previously associated with fibrosis in other organ-specific diseases.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1971
Author(s):  
Xinyang Zhang ◽  
Bohan Cheng ◽  
Haixu Jiang ◽  
Chang Liu ◽  
Zhiping Cao ◽  
...  

The molecular mechanisms of transcription factor 21 (TCF21) in regulating chicken adipogenesis remain unclear. Thus, the current study was designed to investigate the signaling pathway mediating the effect of TCF21 on chicken adipogenesis. Immortalized chicken preadipocytes cell line (ICP), a preadipocyte cell line stably overexpressing TCF21 (LV-TCF21) and a control preadipocyte cell line (LV-control) were used in the current study. We found that the phosphorylation of c-Jun N-terminal kinases (JNK) was significantly elevated in LV-TCF21 compared to LV-control. After treating ICP cells with a JNK inhibitor SP600125, the differentiation of ICP was inhibited, as evidenced by decreased accumulation of lipid droplets and reduced expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), adipocyte fatty acid binding protein (A-FABP), and lipoprotein lipase (LPL). Moreover, we found that the inhibition of JNK by SP600125 remarkably impaired the ability of TCF21 to drive adipogenesis. Taken together, our results suggest that TCF21 promotes the differentiation of adipocytes at least in part via activating MAPK/JNK pathway.


Author(s):  
Takahiro Ikeda ◽  
Shun Watanabe ◽  
Takakazu Mitani

Abstract Genistein exerts anti-adipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the anti-adipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Eun Ae Jeong ◽  
Jaewoong Lee ◽  
Hyun Joo Shin ◽  
Jong Youl Lee ◽  
Kyung Eun Kim ◽  
...  

Abstract Background Diabetic individuals have increased circulating inflammatory mediators which are implicated as underlying causes of neuroinflammation and memory deficits. Tonicity-responsive enhancer-binding protein (TonEBP) promotes diabetic neuroinflammation. However, the precise role of TonEBP in the diabetic brain is not fully understood. Methods We employed a high-fat diet (HFD)-only fed mice or HFD/streptozotocin (STZ)-treated mice in our diabetic mouse models. Circulating TonEBP and lipocalin-2 (LCN2) levels were measured in type 2 diabetic subjects. TonEBP haploinsufficient mice were used to investigate the role of TonEBP in HFD/STZ-induced diabetic mice. In addition, RAW 264.7 macrophages were given a lipopolysaccharide (LPS)/high glucose (HG) treatment. Using a siRNA, we examined the effects of TonEBP knockdown on RAW264 cell’ medium/HG-treated mouse hippocampal HT22 cells. Results Circulating TonEBP and LCN2 levels were higher in experimental diabetic mice or type 2 diabetic patients with cognitive impairment. TonEBP haploinsufficiency ameliorated the diabetic phenotypes including adipose tissue macrophage infiltrations, neuroinflammation, blood–brain barrier leakage, and memory deficits. Systemic and hippocampal LCN2 proteins were reduced in diabetic mice by TonEBP haploinsufficiency. TonEBP (+ / −) mice had a reduction of hippocampal heme oxygenase-1 (HO-1) expression compared to diabetic wild-type mice. In particular, we found that TonEBP bound to the LCN2 promoter in the diabetic hippocampus, and this binding was abolished by TonEBP haploinsufficiency. Furthermore, TonEBP knockdown attenuated LCN2 expression in lipopolysaccharide/high glucose-treated mouse hippocampal HT22 cells. Conclusions These findings indicate that TonEBP may promote neuroinflammation and cognitive impairment via upregulation of LCN2 in diabetic mice.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1764
Author(s):  
Dahae Lee ◽  
Hee Jae Kwak ◽  
Byoung Ha Kim ◽  
Seung Hyun Kim ◽  
Dong-Wook Kim ◽  
...  

Hispidulin is abundant in Arrabidaea chica, Crossostephium chinense, and Grindelia argentina, among others. p-Synephrine is the main phytochemical constituent of Citrus aurantium. It has been used in combination with various other phytochemicals to determine synergistic effects in studies involving human participants. However, there have been no reports comparing the anti-adipogenic effects of the combination of hispidulin and p-synephrine. The current study explores the anti-adipogenic effects of hispidulin alone and in combination with p-synephrine in a murine preadipocyte cell line, 3T3-L1. Co-treatment resulted in a greater inhibition of the formation of red-labeled lipid droplets than the hispidulin or p-synephrine-alone treatments. Co-treatment with hispidulin and p-synephrine also significantly inhibited adipogenic marker proteins, including Akt, mitogen-activated protein kinases, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, glucocorticoid receptor, and CCAAT/enhancer-binding protein β. Although further studies are required to assess the effects of each drug on pharmacokinetic parameters, a combination treatment with hispidulin and p-synephrine may be a potential alternative strategy for developing novel anti-obesity drugs.


2021 ◽  
Vol 22 (23) ◽  
pp. 12689
Author(s):  
Monika J. Stankiewicz ◽  
Jian Du ◽  
Dominick Martinico ◽  
Steven J. Ackerman

CCAAT/enhancer binding protein epsilon (C/EBPε) is required for eosinophil differentiation, lineage-specific gene transcription, and expression of C/EBPε32 and shorter 27kD and 14kD isoforms is developmentally regulated during this process. We previously defined the 27kD isoform (C/EBPε27) as an antagonist of GATA-1 transactivation of the eosinophil’s major basic protein-1 (MBP1) P2-promoter, showing C/EBPε27 and GATA-1 physically interact. In the current study, we used a Tat-C/EBPε27 fusion protein for cell/nuclear transduction of an eosinophil myelocyte cell line to demonstrate that C/EBPε27 is a potent repressor of MBP1 transcription. We performed structure-function analyses of C/EBPε27 mapping its repressor domains, comparing it to C/EBPε32 and C/EBPε14, using GATA-1 co-transactivation of the MBP1-P2 promoter. Results show C/EBPε27 repression of GATA-1 is mediated by its unique 68aa N-terminus combined with previously identified RDI domain. This repressor activity does not require, but is enhanced by, DNA binding via the basic region of C/EBPε27 but independent of sumoylation of the RDI core “VKEEP” sumoylation site. These findings identify the N-terminus of C/EBPε27 as the minimum repressor domain required for antagonism of GATA-1 in the eosinophil. C/EBPε27 repression of GATA-1 occurs via a combination of both C/EBPε27-GATA-1 protein–protein interaction and C/EBPε27 binding to a C/EBP site in the MBP1 promoter. The C/EBPε27 isoform may serve to titrate and/or turn off eosinophil granule protein genes like MBP1 during eosinophil differentiation, as these genes are ultimately silenced in the mature cell. Understanding the functionality of C/EBPε27 in eosinophil development may prove promising in developing therapeutics that reduce eosinophil proliferation in allergic diseases.


Sign in / Sign up

Export Citation Format

Share Document