scholarly journals RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription.

1996 ◽  
Vol 15 (9) ◽  
pp. 2217-2226 ◽  
Author(s):  
K. Hanada ◽  
C. Z. Song ◽  
K. Yamamoto ◽  
K. Yano ◽  
Y. Maeda ◽  
...  
1984 ◽  
Vol 4 (7) ◽  
pp. 1306-1312
Author(s):  
R Miesfeld ◽  
B Sollner-Webb ◽  
C Croce ◽  
N Arnheim

The basis for nucleolar dominance in mouse-human cell hybrids which contained all of the mouse chromosomes but an incomplete set of human chromosomes (M greater than H) was examined at the molecular level. S1 mapping data showed that these cells had the expected levels of steady-state rRNA transcribed from mouse ribosomal gene (rDNA) transcription units but undetectable levels of rRNA derived from the human rDNA transcription templates that are also present. RNA polymerase I-dependent, cell-free transcription extracts were made from three hybrid lines and were found to be capable of transcribing cloned rDNA templates of mouse but not human origin. Partially purified human factors required for rDNA transcription in vitro were added to the M greater than H extracts. One fraction with almost no RNA polymerase I activity conferred on these hybrid cell extracts the ability to transcribe a human rDNA template. These rescue experiments suggested that this required human-specific rDNA transcription factor(s) was effectively absent from the lines we examined and could account for nucleolar dominance in M greater than H hybrid cells.


1984 ◽  
Vol 4 (7) ◽  
pp. 1306-1312 ◽  
Author(s):  
R Miesfeld ◽  
B Sollner-Webb ◽  
C Croce ◽  
N Arnheim

The basis for nucleolar dominance in mouse-human cell hybrids which contained all of the mouse chromosomes but an incomplete set of human chromosomes (M greater than H) was examined at the molecular level. S1 mapping data showed that these cells had the expected levels of steady-state rRNA transcribed from mouse ribosomal gene (rDNA) transcription units but undetectable levels of rRNA derived from the human rDNA transcription templates that are also present. RNA polymerase I-dependent, cell-free transcription extracts were made from three hybrid lines and were found to be capable of transcribing cloned rDNA templates of mouse but not human origin. Partially purified human factors required for rDNA transcription in vitro were added to the M greater than H extracts. One fraction with almost no RNA polymerase I activity conferred on these hybrid cell extracts the ability to transcribe a human rDNA template. These rescue experiments suggested that this required human-specific rDNA transcription factor(s) was effectively absent from the lines we examined and could account for nucleolar dominance in M greater than H hybrid cells.


1984 ◽  
Vol 4 (2) ◽  
pp. 221-227 ◽  
Author(s):  
R Miesfeld ◽  
N Arnheim

RNA polymerase I transcription factors were purified from HeLa and mouse L cell extracts by phosphocellulose chromatography. Three fractions from each species were found to be required for transcription. One of these fractions, virtually devoid of RNA polymerase I activity, was found to form a stable preinitiation complex with small DNA fragments containing promoter sequences from the homologous but not the heterologous species. These species-specific DNA-binding factors can explain nucleolar dominance in vivo in mouse-human hybrid somatic cells and species specificity in cell-free, RNA polymerase I-dependent transcription systems. The evolution of species-specific transcriptional control signals may be the natural outcome of a special relationship that exists between the RNA polymerase I transcription machinery and the multigene family coding for rRNA.


Gene ◽  
2019 ◽  
Vol 706 ◽  
pp. 43-51 ◽  
Author(s):  
Rabab Asghar Abdulwahab ◽  
Abdul Ameer A. Allaith ◽  
Zakia Shinwari ◽  
Ayodele Alaiya ◽  
Hayder A. Giha

1998 ◽  
Vol 275 (1) ◽  
pp. C130-C138 ◽  
Author(s):  
Katherine M. Hannan ◽  
Lawrence I. Rothblum ◽  
Leonard S. Jefferson

The experiments reported here used 3T6-Swiss albino mouse fibroblasts and H4-II-E-C3 rat hepatoma cells as model systems to examine the mechanism(s) through which insulin regulates rDNA transcription. Serum starvation of 3T6 cells for 72 h resulted in a marked reduction in rDNA transcription. Treatment of serum-deprived cells with insulin was sufficient to restore rDNA transcription to control values. In addition, treatment of exponentially growing H4-II-E-C3 with insulin stimulated rDNA transcription. However, for both cell types, the stimulation of rDNA transcription in response to insulin was not associated with a change in the cellular content of RNA polymerase I. Thus we conclude that insulin must cause alterations in formation of the active RNA polymerase I initiation complex and/or the activities of auxiliary rDNA transcription factors. In support of this conclusion, insulin treatment of both cell types was found to increase the nuclear content of upstream binding factor (UBF) and RNA polymerase I-associated factor 53. Both of these factors are thought to be involved in recruitment of RNA polymerase I to the rDNA promoter. Nuclear run-on experiments demonstrated that the increase in cellular content of UBF was due to elevated transcription of the UBF gene. In addition, overexpression of UBF was sufficient to directly stimulate rDNA transcription from a reporter construct. The results demonstrate that insulin is capable of stimulating rDNA transcription in both 3T6 and H4-II-E-C3 cells, at least in part by increasing the cellular content of components required for assembly of RNA polymerase I into an active complex.


2000 ◽  
Vol 11 (6) ◽  
pp. 2175-2189 ◽  
Author(s):  
Stéphanie Trumtel ◽  
Isabelle Léger-Silvestre ◽  
Pierre-Emmanuel Gleizes ◽  
Frédéric Teulières ◽  
Nicole Gas

Using Saccharomyces cerevisiae strains with genetically modified nucleoli, we show here that changing parameters as critical as the tandem organization of the ribosomal genes and the polymerase transcribing rDNA, although profoundly modifying the position and the shape of the nucleolus, only partially alter its functional subcompartmentation. High-resolution morphology achieved by cryofixation, together with ultrastructural localization of nucleolar proteins and rRNA, reveals that the nucleolar structure, arising upon transcription of rDNA from plasmids by RNA polymerase I, is still divided in functional subcompartments like the wild-type nucleolus. rRNA maturation is restricted to a fibrillar component, reminiscent of the dense fibrillar component in wild-type cells; a granular component is also present, whereas no fibrillar center can be distinguished, which directly links this latter substructure to rDNA chromosomal organization. Although morphologically different, the mininucleoli observed in cells transcribing rDNA with RNA polymerase II also contain a fibrillar subregion of analogous function, in addition to a dense core of unknown nature. Upon repression of rDNA transcription in this strain or in an RNA polymerase I thermosensitive mutant, the nucleolar structure falls apart (in a reversible manner), and nucleolar constituents partially relocate to the nucleoplasm, indicating that rRNA is a primary determinant for the assembly of the nucleolus.


Sign in / Sign up

Export Citation Format

Share Document