scholarly journals Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis.

1996 ◽  
Vol 15 (14) ◽  
pp. 3732-3743 ◽  
Author(s):  
P. Puente ◽  
N. Wei ◽  
X. W. Deng
2022 ◽  
Author(s):  
Shaunak Kar ◽  
Yogendra Bordiya ◽  
Nestor Rodriguez ◽  
Junghyun Kim ◽  
Elizabeth C Gardner ◽  
...  

Abstract Background: The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. Results: A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. Conclusions: The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.


2021 ◽  
Author(s):  
Shaunak Kar ◽  
Yogendra Bordiya ◽  
Nestor Rodriguez ◽  
Jungyun Kim ◽  
Elizabeth C Gardner ◽  
...  

Background: The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. Results: A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. Conclusions: The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.


2019 ◽  
Vol 15 (2) ◽  
pp. 120-130
Author(s):  
Mohammad Ghanbari ◽  
Reza Safaralizadeh ◽  
Kiyanoush Mohammadi

At the present time, cancer is one of the most lethal diseases worldwide. There are various factors involved in the development of cancer, including genetic factors, lifestyle, nutrition, and so on. Recent studies have shown that epigenetic factors have a critical role in the initiation and development of tumors. The histone post-translational modifications (PTMs) such as acetylation, methylation, phosphorylation, and other PTMs are important mechanisms that regulate the status of chromatin structure and this regulation leads to the control of gene expression. The histone acetylation is conducted by histone acetyltransferase enzymes (HATs), which are involved in transferring an acetyl group to conserved lysine amino acids of histones and consequently increase gene expression. On the basis of similarity in catalytic domains of HATs, these enzymes are divided into different groups such as families of GNAT, MYST, P300/CBP, SRC/P160, and so on. These enzymes have effective roles in apoptosis, signaling pathways, metastasis, cell cycle, DNA repair and other related mechanisms deregulated in cancer. Abnormal activation of HATs leads to uncontrolled amplification of cells and incidence of malignancy signs. This indicates that HAT might be an important target for effective cancer treatments, and hence there would be a need for further studies and designing of therapeutic drugs on this basis. In this study, we have reviewed the important roles of HATs in different human malignancies.


Sign in / Sign up

Export Citation Format

Share Document