spatiotemporal control
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 224)

H-INDEX

48
(FIVE YEARS 11)

2022 ◽  
Vol 23 (2) ◽  
pp. 954
Author(s):  
Ipek Akol ◽  
Fabian Gather ◽  
Tanja Vogel

Development of the central nervous system (CNS) depends on accurate spatiotemporal control of signaling pathways and transcriptional programs. Forkhead Box G1 (FOXG1) is one of the master regulators that play fundamental roles in forebrain development; from the timing of neurogenesis, to the patterning of the cerebral cortex. Mutations in the FOXG1 gene cause a rare neurodevelopmental disorder called FOXG1 syndrome, also known as congenital form of Rett syndrome. Patients presenting with FOXG1 syndrome manifest a spectrum of phenotypes, ranging from severe cognitive dysfunction and microcephaly to social withdrawal and communication deficits, with varying severities. To develop and improve therapeutic interventions, there has been considerable progress towards unravelling the multi-faceted functions of FOXG1 in the neurodevelopment and pathogenesis of FOXG1 syndrome. Moreover, recent advances in genome editing and stem cell technologies, as well as the increased yield of information from high throughput omics, have opened promising and important new avenues in FOXG1 research. In this review, we provide a summary of the clinical features and emerging molecular mechanisms underlying FOXG1 syndrome, and explore disease-modelling approaches in animals and human-based systems, to highlight the prospects of research and possible clinical interventions.


2022 ◽  
Author(s):  
Alexander Kenneth Hurben ◽  
Peng Ge ◽  
Jacob L Bouchard ◽  
Todd M. Doran ◽  
Natalia Tretyakova

Protein glycation is a disease associated, non-enzymatic, posttranslational modification generated by endogenous dicarbonyl metabolites. Currently, there is a lack of chemical tools capable of studying protein adducts caused by this...


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonathan S. Baillie ◽  
Matthew R. Stoyek ◽  
T. Alexander Quinn

Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins (“reporters” and “actuators”), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.


2021 ◽  
Author(s):  
Joyce C.M. Meiring ◽  
Ilya Grigoriev ◽  
Wilco Nijenhuis ◽  
Lukas C. Kapitein ◽  
Anna Akhmanova

Microtubules are major cytoskeletal filaments that drive chromosome separation during cell division, serve as rails for intracellular transport and as a scaffold for organelle positioning. Experimental manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubule integrity are currently lacking. Here, we exploit the dependence of the mammalian microtubule-severing protein katanin on microtubule-targeting co-factors to generate a light-activated system for localized microtubule disassembly that we named opto-katanin. Targeted illumination with blue light induces rapid and localized opto-katanin recruitment and local microtubule depolymerization, which is quickly reversible after stopping light-induced activation. Opto-katanin can be employed to locally perturb microtubule-based transport and organelle morphology in dividing cells and differentiated neurons with high spatiotemporal precision. We show that different microtubule-associated proteins can be used to recruit opto-katanin to microtubules and induce severing, paving the way for spatiotemporally precise manipulation of specific microtubule subpopulations.


Author(s):  
Yuzhen Chen ◽  
Tianzhen Liu ◽  
Lihua Jin

Many species can dynamically alter their skin textures to enhance their motility and survivability. Despite the enormous efforts on designing bio-inspired materials with tunable surface textures, developing spatiotemporally programmable and reconfigurable textural morphing without complex control remains challenging. Here we propose a design strategy to achieve metasurfaces with such properties. The metasurfaces comprise an array of unit cells with broadly tailored temporal responses. By arranging the unit cells differently, the metasurfaces can exhibit various spatiotemporal responses, which can be easily reconfigured by disassembling and rearranging the unit cells. Specifically, we adopt viscoelastic shells as the unit cells, which can be pneumatically actuated to a concave state, and recover the initial convex state some time after the load is removed. We computationally and experimentally show that the recovery time can be widely tuned by the geometry and material viscoelasticity of the shells. By assembling such shells with different recovery time, we build metasurfaces with pre-programmed spatiotemporal textural morphing under simple pneumatic actuation, and demonstrate temporal evolution of patterns, such as digit numbers and emoji, and spatiotemporal control of friction. This work opens up new avenues in designing spatiotemporal morphing metasurfaces that could be employed for programming mechanical, optical and electrical properties. Corresponding author: Lihua Jin, Email:   [email protected]  


2021 ◽  
Author(s):  
Sisi Fan ◽  
Bin Ji ◽  
Yan Liu ◽  
Kexuan Zou ◽  
Zhijin Tian ◽  
...  

2021 ◽  
pp. JN-RM-1176-21
Author(s):  
Jacqueline K. Khamma ◽  
Daniel S. Copeland ◽  
Holly S. Hake ◽  
Stephanie C. Gantz

2021 ◽  
Vol 17 ◽  
pp. 2932-2938
Author(s):  
Haopei Wang ◽  
Zachary T Ball

Photo-responsive modifications and photo-uncaging concepts are useful for spatiotemporal control of peptides structure and function. While side chain photo-responsive modifications are relatively common, access to photo-responsive modifications of backbone N–H bonds is quite limited. This letter describes a new photocleavage pathway, affording N-formyl amides from vinylogous nitroaryl precursors under physiologically relevant conditions via a formal oxidative C=C cleavage. The N-formyl amide products have unique properties and reactivity, but are difficult or impossible to access by traditional synthetic approaches.


Sign in / Sign up

Export Citation Format

Share Document