Parallel Fault Simulation Using Distributed Processing*

1983 ◽  
Vol 62 (10) ◽  
pp. 3107-3137 ◽  
Y. H. Levendel ◽  
P. R. Menon ◽  
S. H. Patel
2010 ◽  
Vol 69 (18) ◽  
pp. 1653-1660
Rasim Magamed ogly Alguliev ◽  
B. S. Agaev ◽  
T. Kh. Fataliev ◽  
T. S. Aliev

Rommel Estores ◽  
Karo Vander Gucht

Abstract This paper discusses a creative manual diagnosis approach, a complementary technique that provides the possibility to extend Automatic Test Pattern Generation (ATPG) beyond its own limits. The authors will discuss this approach in detail using an actual case – a test coverage issue where user-generated ATPG patterns and the resulting ATPG diagnosis isolated the fault to a small part of the digital core. However, traditional fault localization techniques was unable to isolate the fault further. Using the defect candidates from ATPG diagnosis as a starting point, manual diagnosis through fault Injection and fault simulation was performed. Further fault localization was performed using the ‘not detected’ (ND) and/or ‘detected’ (DT) fault classes for each of the available patterns. The result has successfully deduced the defect candidates until the exact faulty net causing the electrical failure was identified. The ability of the FA lab to maximize the use of ATPG in combination with other tools/techniques to investigate failures in detail; is crucial in the fast root cause determination and, in case of a test coverage, aid in having effective test screen method implemented.

Dan Bodoh ◽  
Anthony Blakely ◽  
Terry Garyet

Abstract Since failure analysis (FA) tools originated in the design-for-test (DFT) realm, most have abstractions that reflect a designer's viewpoint. These abstractions prevent easy application of diagnosis results in the physical world of the FA lab. This article presents a fault diagnosis system, DFS/FA, which bridges the DFT and FA worlds. First, it describes the motivation for building DFS/FA and how it is an improvement over off-the-shelf tools and explains the DFS/FA building blocks on which the diagnosis tool depends. The article then discusses the diagnosis algorithm in detail and provides an overview of some of the supporting tools that make DFS/FA a complete solution for FA. It also presents a FA example where DFS/FA has been applied. The example demonstrates how the consideration of physical proximity improves the accuracy without sacrificing precision.

O. Dmytriieva ◽  
D. Nikulin

Роботу присвячено питанням розподіленої обробки транзакцій при проведенні аналізу великих обсягів даних з метою пошуку асоціативних правил. На основі відомих алгоритмів глибинного аналізу даних для пошуку частих предметних наборів AIS та Apriori було визначено можливі варіанти паралелізації, які позбавлені необхідності ітераційного сканування бази даних та великого споживання пам'яті. Досліджено можливість перенесення обчислень на різні платформи, які підтримують паралельну обробку даних. В якості обчислювальних платформ було обрано MapReduce – потужну базу для обробки великих, розподілених наборів даних на кластері Hadoop, а також програмний інструмент для обробки надзвичайно великої кількості даних Apache Spark. Проведено порівняльний аналіз швидкодії розглянутих методів, отримано рекомендації щодо ефективного використання паралельних обчислювальних платформ, запропоновано модифікації алгоритмів пошуку асоціативних правил. В якості основних завдань, реалізованих в роботі, слід визначити дослідження сучасних засобів розподіленої обробки структурованих і не структурованих даних, розгортання тестового кластера в хмарному сервісі, розробку скриптів для автоматизації розгортання кластера, проведення модифікацій розподілених алгоритмів з метою адаптації під необхідні фреймворки розподілених обчислень, отримання показників швидкодії обробки даних в послідовному і розподіленому режимах з застосуванням Hadoop MapReduce. та Apache Spark, проведення порівняльного аналізу результатів тестових вимірів швидкодії, отримання та обґрунтування залежності між кількістю оброблюваних даних, і часом, витраченим на обробку, оптимізацію розподілених алгоритмів пошуку асоціативних правил при обробці великих обсягів транзакційних даних, отримання показників швидкодії розподіленої обробки існуючими програмними засобами. Ключові слова: розподілена обробка, транзакційні дані, асоціативні правила, обчислюваний кластер, Hadoop, MapReduce, Apache Spark

Sign in / Sign up

Export Citation Format

Share Document