Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells

2002 ◽  
Vol 60 (1) ◽  
pp. 70-78 ◽  
Author(s):  
P. J. ter Brugge ◽  
J. G. C. Wolke ◽  
J. A. Jansen
2007 ◽  
Vol 361-363 ◽  
pp. 907-910
Author(s):  
Marco A. Lopez-Heredia ◽  
Borhane H. Fellah ◽  
Paul Pilet ◽  
C. Leroux ◽  
M. Dorget ◽  
...  

Porous Titanium Scaffolds were produced by using a rapid prototyping technique. These scaffolds were either coated or not with a calcium phosphate coating via an eletrodeposition method. Rat bone marrow mesenchymal stem cells were cultured on the scaffolds at a density of 106 cells/scaffold for a period of 3 days. Cell proliferation was measured by using the Alamar Blue assay. The scaffolds were observed by SEM and polarized light microscopy. Constructs were then implanted subcutaneously for 4 weeks in syngenic rats. Cells proliferated well after seeding. After subcutaneous implantation, histology and SEM revealed the presence of uniform coatings as well as Ca and P deposits in the non-coated scaffolds suggesting mineralization.


1999 ◽  
Vol 13 (1) ◽  
pp. 74-81 ◽  
Author(s):  
Joost D. DeBruijn ◽  
Ineke Van Den Brink ◽  
Sandra Mendes ◽  
Robert Dekker ◽  
Yvonne P. Bovell ◽  
...  

The availability of osteoinductive coatings on dental and orthopedic implants will result in an improved fixation of these devices. Those cases where implants are placed in poor-quality bone or where high failure rates are obtained are especially expected to gain from such coatings. This paper presents a novel, biological approach to obtain bioactive and osteoinductive coatings on bone-replacement implant materials. This so-called tissue engineering approach utilizes osteogenic bone marrow cells that are cultured on an implant material to form a bone-like tissue. The implant materials used herein included porous calcium phosphate scaffolds and metallic plates, the latter of which were coated with a biomimetic calcium phosphate coating to facilitate cellular attachment. Bone marrow cells were obtained from a variety of species, including humans, and were grown to facilitate cellular proliferation. The cells were subsequently seeded onto the implants and cultured for an additional week to facilitate osteogenic differentiation and extracellular matrix production. The resulting hybrid implants, encompassing the biomaterial carrier and cultured bone-like tissue, were subsequently implanted subcutaneously in nude mice for 4 weeks, followed by histological examination for de novo bone formation. The results revealed that newly formed bone was seen both in porous implants and on flat metallic surfaces. This bone tissue engineering approach, therefore, offers great potential to enhance bony healing around implants in a compromised bone bed.


2019 ◽  
Vol 19 (14) ◽  
pp. 1695-1702 ◽  
Author(s):  
Mohsen Cheki ◽  
Salman Jafari ◽  
Masoud Najafi ◽  
Aziz Mahmoudzadeh

Background and Objective: Glucosamine is a widely prescribed dietary supplement used in the treatment of osteoarthritis. In the present study, the chemoprotectant ability of glucosamine was evaluated against cisplatin-induced genotoxicity and cytotoxicity in rat bone marrow cells. Methods: Glucosamine was orally administrated to rats at doses of 75 and 150 mg/kg body weight for seven consecutive days. On the seventh day, the rats were treated with a single injection of cisplatin (5 mg/kg, i.p.) at 1h after the last oral administration. The cisplatin antagonistic potential of glucosamine was assessed by micronucleus assay, Reactive Oxygen Species (ROS) level analysis, hematological analysis, and flow cytometry. Results: Glucosamine administration to cisplatin-treated rats significantly decreased the frequencies of Micronucleated Polychromatic Erythrocytes (MnPCEs) and Micronucleated Normchromatic Erythrocytes (MnNCEs), and also increased PCE/(PCE+NCE) ratio in bone marrow cells. Furthermore, treatment of rats with glucosamine before cisplatin significantly inhibited apoptosis, necrosis and ROS generation in bone marrow cells, and also increased red blood cells count in peripheral blood. Conclusion: This study shows glucosamine to be a new effective chemoprotector against cisplatin-induced DNA damage and apoptosis in rat bone marrow cells. The results of this study may be helpful in reducing the harmful effects of cisplatin-based chemotherapy in the future.


2011 ◽  
Vol 147 (1-3) ◽  
pp. 261-266 ◽  
Author(s):  
Ye Tian ◽  
Jiexiu Zhao ◽  
Binxiu Zhao ◽  
Qi Gao ◽  
Jincheng Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document